Question #117075
Obtain the Taylor series for f(x) = √x at a=4
1
Expert's answer
2020-05-21T15:31:35-0400

Given

f(x)=x,        a=4f(x)= \sqrt{x},\ \ \ \ \ \ \ \ a= 4

Since

f(x)=x          f(4)=2f(x)=12x1/2          f(4)=14f(x)=14x3/2          f(4)=132f(x)=38x5/2          f(4)=3256f(4)(x)=1516x7/2          f(4)(4)=152048f(5)(x)=10532x9/2          f(5)(4)=10516384\begin{aligned} f(x) &=\sqrt{x} \ \ \ \ \ \ \ \ \ \ f(4)=2 \\ f'(x) &=\frac{1}{2}x^{-1/2} \ \ \ \ \ \ \ \ \ \ f'(4)=\frac{1}{4}\\ f''(x) &=\frac{-1}{4}x^{-3/2} \ \ \ \ \ \ \ \ \ \ f''(4)=\frac{-1}{32}\\ f'''(x) &=\frac{3}{8}x^{-5/2} \ \ \ \ \ \ \ \ \ \ f'''(4)=\frac{3}{256}\\ f^{(4)}(x) &=\frac{-15}{16}x^{-7/2} \ \ \ \ \ \ \ \ \ \ f^{(4)}(4)=\frac{-15}{2048}\\ f^{(5)}(x) &=\frac{105}{32}x^{-9/2} \ \ \ \ \ \ \ \ \ \ f^{(5)}(4)=\frac{105}{16384}\\ \end{aligned}

Then  Taylor series for f(x) 

f(x)P(x)=k=0nf(k)(a)k!(xa)k=2+14(x4)164(x4)2+1512(x4)3516384(x4)4+7131072(x4)5+f(x) \approx P(x)\\ =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k !}(x-a)^{k}\\ = 2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}-\\-\frac{5}{16384}(x-4)^{4} +\frac{7}{131072}(x-4)^{5}+\cdots


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS