Given
f ( x ) = x , a = 4 f(x)= \sqrt{x},\ \ \ \ \ \ \ \ a= 4 f ( x ) = x , a = 4
Since
f ( x ) = x f ( 4 ) = 2 f ′ ( x ) = 1 2 x − 1 / 2 f ′ ( 4 ) = 1 4 f ′ ′ ( x ) = − 1 4 x − 3 / 2 f ′ ′ ( 4 ) = − 1 32 f ′ ′ ′ ( x ) = 3 8 x − 5 / 2 f ′ ′ ′ ( 4 ) = 3 256 f ( 4 ) ( x ) = − 15 16 x − 7 / 2 f ( 4 ) ( 4 ) = − 15 2048 f ( 5 ) ( x ) = 105 32 x − 9 / 2 f ( 5 ) ( 4 ) = 105 16384 \begin{aligned}
f(x) &=\sqrt{x} \ \ \ \ \ \ \ \ \ \ f(4)=2 \\
f'(x) &=\frac{1}{2}x^{-1/2} \ \ \ \ \ \ \ \ \ \ f'(4)=\frac{1}{4}\\
f''(x) &=\frac{-1}{4}x^{-3/2} \ \ \ \ \ \ \ \ \ \ f''(4)=\frac{-1}{32}\\
f'''(x) &=\frac{3}{8}x^{-5/2} \ \ \ \ \ \ \ \ \ \ f'''(4)=\frac{3}{256}\\
f^{(4)}(x) &=\frac{-15}{16}x^{-7/2} \ \ \ \ \ \ \ \ \ \ f^{(4)}(4)=\frac{-15}{2048}\\
f^{(5)}(x) &=\frac{105}{32}x^{-9/2} \ \ \ \ \ \ \ \ \ \ f^{(5)}(4)=\frac{105}{16384}\\
\end{aligned} f ( x ) f ′ ( x ) f ′′ ( x ) f ′′′ ( x ) f ( 4 ) ( x ) f ( 5 ) ( x ) = x f ( 4 ) = 2 = 2 1 x − 1/2 f ′ ( 4 ) = 4 1 = 4 − 1 x − 3/2 f ′′ ( 4 ) = 32 − 1 = 8 3 x − 5/2 f ′′′ ( 4 ) = 256 3 = 16 − 15 x − 7/2 f ( 4 ) ( 4 ) = 2048 − 15 = 32 105 x − 9/2 f ( 5 ) ( 4 ) = 16384 105
Then Taylor series for f(x)
f ( x ) ≈ P ( x ) = ∑ k = 0 n f ( k ) ( a ) k ! ( x − a ) k = 2 + 1 4 ( x − 4 ) − 1 64 ( x − 4 ) 2 + 1 512 ( x − 4 ) 3 − − 5 16384 ( x − 4 ) 4 + 7 131072 ( x − 4 ) 5 + ⋯ f(x) \approx P(x)\\
=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k !}(x-a)^{k}\\
= 2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}-\\-\frac{5}{16384}(x-4)^{4} +\frac{7}{131072}(x-4)^{5}+\cdots f ( x ) ≈ P ( x ) = ∑ k = 0 n k ! f ( k ) ( a ) ( x − a ) k = 2 + 4 1 ( x − 4 ) − 64 1 ( x − 4 ) 2 + 512 1 ( x − 4 ) 3 − − 16384 5 ( x − 4 ) 4 + 131072 7 ( x − 4 ) 5 + ⋯
Comments