Given
"f(x)= \\sqrt{x},\\ \\ \\ \\ \\ \\ \\ \\ a= 4"
Since
"\\begin{aligned}\nf(x) &=\\sqrt{x} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ f(4)=2 \\\\\nf'(x) &=\\frac{1}{2}x^{-1\/2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ f'(4)=\\frac{1}{4}\\\\\nf''(x) &=\\frac{-1}{4}x^{-3\/2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ f''(4)=\\frac{-1}{32}\\\\\nf'''(x) &=\\frac{3}{8}x^{-5\/2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ f'''(4)=\\frac{3}{256}\\\\\nf^{(4)}(x) &=\\frac{-15}{16}x^{-7\/2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ f^{(4)}(4)=\\frac{-15}{2048}\\\\\nf^{(5)}(x) &=\\frac{105}{32}x^{-9\/2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ f^{(5)}(4)=\\frac{105}{16384}\\\\\n\\end{aligned}"
Then  Taylor series for f(x)Â
"f(x) \\approx P(x)\\\\\n=\\sum_{k=0}^{n} \\frac{f^{(k)}(a)}{k !}(x-a)^{k}\\\\\n= 2+\\frac{1}{4}(x-4)-\\frac{1}{64}(x-4)^{2}+\\frac{1}{512}(x-4)^{3}-\\\\-\\frac{5}{16384}(x-4)^{4} +\\frac{7}{131072}(x-4)^{5}+\\cdots"
Comments
Leave a comment