Let "\\vec k" be the tangent vector and "\\vec e" the unit tangent vector, then
"\\vec e=\\frac {\\vec k}{|k|}"
Find the tangent vector
"\\vec k=\\frac {d\\vec r}{dt}=\u3008\\frac{d(2 sin(3t))}{dt}, \\frac{d\\sqrt 4t}{dt}, \\frac{d(2cos(3t)}{dt}\u3009=\u30086cos3t, 2, -6sin3t\u3009"
Now we find the module of the "\\vec k"
"|\\vec k|=\\sqrt{(6cos3t)^2+2^2+(-6sin3t)^2}=\\sqrt{40}=2\\sqrt{10}""\\vec e=\\frac{\u30086cos3t, 2, -6sin3t\u3009}{2\\sqrt{10}}=\u3008\\frac{3\\sqrt{10}}{10} cos3t, \\frac{\\sqrt{10}}{10}, -\\frac{3\\sqrt{10}}{10}sin3t\u3009"Answer: "\u3008\\frac{3\\sqrt{10}}{10} cos3t, \\frac{\\sqrt{10}}{10}, -\\frac{3\\sqrt{10}}{10}sin3t\u3009"
Comments
Leave a comment