Let k ⃗ \vec k k be the tangent vector and e ⃗ \vec e e the unit tangent vector, then
k ⃗ = d r ⃗ d t \vec k=\frac {d\vec r}{dt} k = d t d r
e ⃗ = k ⃗ ∣ k ∣ \vec e=\frac {\vec k}{|k|} e = ∣ k ∣ k Find the tangent vector
k ⃗ = d r ⃗ d t = 〈 d ( 2 s i n ( 3 t ) ) d t , d 4 t d t , d ( 2 c o s ( 3 t ) d t 〉 = 〈 6 c o s 3 t , 2 , − 6 s i n 3 t 〉 \vec k=\frac {d\vec r}{dt}=〈\frac{d(2 sin(3t))}{dt}, \frac{d\sqrt 4t}{dt}, \frac{d(2cos(3t)}{dt}〉=〈6cos3t, 2, -6sin3t〉 k = d t d r = 〈 d t d ( 2 s in ( 3 t )) , d t d 4 t , d t d ( 2 cos ( 3 t ) 〉 = 〈 6 cos 3 t , 2 , − 6 s in 3 t 〉
Now we find the module of the k ⃗ \vec k k
∣ k ⃗ ∣ = ( 6 c o s 3 t ) 2 + 2 2 + ( − 6 s i n 3 t ) 2 = 40 = 2 10 |\vec k|=\sqrt{(6cos3t)^2+2^2+(-6sin3t)^2}=\sqrt{40}=2\sqrt{10} ∣ k ∣ = ( 6 cos 3 t ) 2 + 2 2 + ( − 6 s in 3 t ) 2 = 40 = 2 10 e ⃗ = 〈 6 c o s 3 t , 2 , − 6 s i n 3 t 〉 2 10 = 〈 3 10 10 c o s 3 t , 10 10 , − 3 10 10 s i n 3 t 〉 \vec e=\frac{〈6cos3t, 2, -6sin3t〉}{2\sqrt{10}}=〈\frac{3\sqrt{10}}{10} cos3t, \frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10}sin3t〉 e = 2 10 〈 6 cos 3 t , 2 , − 6 s in 3 t 〉 = 〈 10 3 10 cos 3 t , 10 10 , − 10 3 10 s in 3 t 〉 Answer: 〈 3 10 10 c o s 3 t , 10 10 , − 3 10 10 s i n 3 t 〉 〈\frac{3\sqrt{10}}{10} cos3t, \frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10}sin3t〉 〈 10 3 10 cos 3 t , 10 10 , − 10 3 10 s in 3 t 〉
Comments