The parametric equation of the tangent, for "t=t_0" , to the line given parametrically "r(t)" has the form
"r_{tan}(t)=r\\left(t_0\\right)+t\\cdot r'\\left(t_0\\right)"
or in coordinate form
"r_{tan}(t)=\\left\\{\\begin{array}{l}\nx_{tan}(t)=x\\left(t_0\\right)+t\\cdot x'\\left(t_0\\right)\\\\[0.3cm]\ny_{tan}(t)=y\\left(t_0\\right)+t\\cdot y'\\left(t_0\\right)\\\\[0.3cm]\nz_{tan}(t)=z\\left(t_0\\right)+t\\cdot z'\\left(t_0\\right)\n\\end{array}\\right."
In our case,
"r(t)=e^{-t}\\cdot\\langle\\cos t,\\sin t,1\\rangle\\longrightarrow\\\\[0.3cm]\nr(0)=e^0\\cdot\\langle\\cos0,\\sin0,1\\rangle\\longrightarrow\\boxed{r(0)=\\langle1,0,1\\rangle}\\\\[0.3cm]\nr'(t)=-e^{-t}\\cdot\\langle\\cos t,\\sin t,1\\rangle+e^{-t}\\cdot\\langle-\\sin t,\\cos t,0\\rangle\\\\[0.3cm]\nr'(0)=-e^{-0}\\cdot\\langle\\cos0,\\sin0,1\\rangle+e^{-0}\\cdot\\langle-\\sin 0,\\cos 0,0\\rangle=\\\\[0.3cm]\n=-1\\cdot\\langle1,0,1\\rangle+1\\cdot\\langle0,1,0\\rangle=\\langle-1,1,-1\\rangle\\\\[0.3cm]\n\\boxed{r'(0)=\\langle-1,1,-1\\rangle}"
Then, The parametric equation of the tangent is
"r_{tan}(t)=\\langle1,0,1\\rangle+t\\cdot\\langle-1,1,-1\\rangle=\\langle1-t,t,1-t\\rangle\\\\[0.3cm]\n\\boxed{r_{tan}(t)=\\langle1-t,t,1-t\\rangle}"
or in coordinate form
"r_{tan}(t)=\\left\\{\\begin{array}{l}\nx_{tan}(t)=1-t\\\\[0.3cm]\ny_{tan}(t)=t\\\\[0.3cm]\nz_{tan}(t)=1-t\n\\end{array}\\right."
ANSWER
Vecotr form
"r_{tan}(t)=\\langle1-t,t,1-t\\rangle"
or in coordinate form
"r_{tan}(t)=\\left\\{\\begin{array}{l}\nx_{tan}(t)=1-t\\\\[0.3cm]\ny_{tan}(t)=t\\\\[0.3cm]\nz_{tan}(t)=1-t\n\\end{array}\\right."
Comments
Leave a comment