Question #117435
Find parametric equations for the tangent line to the curve r(t) =e^(−t)〈cos(t),sin(t),1〉at t= 0.
1
Expert's answer
2020-05-25T21:21:19-0400

The parametric equation of the tangent, for t=t0t=t_0 , to the line given parametrically r(t)r(t) has the form



rtan(t)=r(t0)+tr(t0)r_{tan}(t)=r\left(t_0\right)+t\cdot r'\left(t_0\right)



or in coordinate form



rtan(t)={xtan(t)=x(t0)+tx(t0)ytan(t)=y(t0)+ty(t0)ztan(t)=z(t0)+tz(t0)r_{tan}(t)=\left\{\begin{array}{l} x_{tan}(t)=x\left(t_0\right)+t\cdot x'\left(t_0\right)\\[0.3cm] y_{tan}(t)=y\left(t_0\right)+t\cdot y'\left(t_0\right)\\[0.3cm] z_{tan}(t)=z\left(t_0\right)+t\cdot z'\left(t_0\right) \end{array}\right.

In our case,



r(t)=etcost,sint,1r(0)=e0cos0,sin0,1r(0)=1,0,1r(t)=etcost,sint,1+etsint,cost,0r(0)=e0cos0,sin0,1+e0sin0,cos0,0==11,0,1+10,1,0=1,1,1r(0)=1,1,1r(t)=e^{-t}\cdot\langle\cos t,\sin t,1\rangle\longrightarrow\\[0.3cm] r(0)=e^0\cdot\langle\cos0,\sin0,1\rangle\longrightarrow\boxed{r(0)=\langle1,0,1\rangle}\\[0.3cm] r'(t)=-e^{-t}\cdot\langle\cos t,\sin t,1\rangle+e^{-t}\cdot\langle-\sin t,\cos t,0\rangle\\[0.3cm] r'(0)=-e^{-0}\cdot\langle\cos0,\sin0,1\rangle+e^{-0}\cdot\langle-\sin 0,\cos 0,0\rangle=\\[0.3cm] =-1\cdot\langle1,0,1\rangle+1\cdot\langle0,1,0\rangle=\langle-1,1,-1\rangle\\[0.3cm] \boxed{r'(0)=\langle-1,1,-1\rangle}

Then, The parametric equation of the tangent is



rtan(t)=1,0,1+t1,1,1=1t,t,1trtan(t)=1t,t,1tr_{tan}(t)=\langle1,0,1\rangle+t\cdot\langle-1,1,-1\rangle=\langle1-t,t,1-t\rangle\\[0.3cm] \boxed{r_{tan}(t)=\langle1-t,t,1-t\rangle}

or in coordinate form



rtan(t)={xtan(t)=1tytan(t)=tztan(t)=1tr_{tan}(t)=\left\{\begin{array}{l} x_{tan}(t)=1-t\\[0.3cm] y_{tan}(t)=t\\[0.3cm] z_{tan}(t)=1-t \end{array}\right.

ANSWER

Vecotr form



rtan(t)=1t,t,1tr_{tan}(t)=\langle1-t,t,1-t\rangle

or in coordinate form



rtan(t)={xtan(t)=1tytan(t)=tztan(t)=1tr_{tan}(t)=\left\{\begin{array}{l} x_{tan}(t)=1-t\\[0.3cm] y_{tan}(t)=t\\[0.3cm] z_{tan}(t)=1-t \end{array}\right.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS