Given series is "\\sum_{n=0}^{\\infin} u_n = \\sum_{n=0}^{\\infin} \\frac{(x+3)^n}{2^n}."
So, "u_n = \\frac{(x+3)^n}{2^n}"
Now for convergence of series, "\\lim_{n\\to \\infin} |\\frac{u_{n+1}}{u_n}| < 1"
"\\implies \\lim_{n\\to \\infin} |\\frac{(x+3)^{n+1}\/2^{n+1}}{(x+3)^n\/ 2^n}| < 1"
"\\implies \\lim_{n\\to \\infin} |\\frac{x+3}{2}| < 1 \\\\\n\\implies |x+3| < 2"
So, radius of convergence of given series is 2.
Comments
Leave a comment