We should calculate the radius of convergence of the series
∑n=0∞nxn3n=∑n=0∞n(x3)n.\sum\limits_{n=0}^{\infty} \dfrac{nx^n}{3^n} = \sum\limits_{n=0}^{\infty} n \left(\dfrac{x}{3}\right)^n.n=0∑∞3nnxn=n=0∑∞n(3x)n.
We may use the D'Alembert's rule and calculate the radius of convergence as
R=limn→∞∣n(13)n(n+1)(13)n+1∣=3.R = \lim\limits_{n\to\infty} \left| \dfrac{n \left(\dfrac{1}{3}\right)^n}{(n+1) \left(\dfrac{1}{3}\right)^{n+1}} \right| = 3.R=n→∞lim∣∣(n+1)(31)n+1n(31)n∣∣=3.
If x=3,x=3,x=3, then ∑n=0∞n(x3)n=∑n=0∞n=+∞.\sum\limits_{n=0}^{\infty} n\left(\dfrac{x}{3}\right)^n = \sum\limits_{n=0}^{\infty} n = +\infty.n=0∑∞n(3x)n=n=0∑∞n=+∞.
If x=−3,x=-3,x=−3, then ∑n=0∞n(x3)n=∑n=0∞(−1)nn,\sum\limits_{n=0}^{\infty} n\left(\dfrac{x}{3}\right)^n = \sum\limits_{n=0}^{\infty} (-1)^nn,n=0∑∞n(3x)n=n=0∑∞(−1)nn, this series is not convergent, therefore the interval of convergence is (-3, 3).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments