We should calculate the radius of convergence of the series
∑ n = 0 ∞ n x n 3 n = ∑ n = 0 ∞ n ( x 3 ) n . \sum\limits_{n=0}^{\infty} \dfrac{nx^n}{3^n} = \sum\limits_{n=0}^{\infty} n \left(\dfrac{x}{3}\right)^n. n = 0 ∑ ∞ 3 n n x n = n = 0 ∑ ∞ n ( 3 x ) n .
We may use the D'Alembert's rule and calculate the radius of convergence as
R = lim n → ∞ ∣ n ( 1 3 ) n ( n + 1 ) ( 1 3 ) n + 1 ∣ = 3. R = \lim\limits_{n\to\infty} \left| \dfrac{n \left(\dfrac{1}{3}\right)^n}{(n+1) \left(\dfrac{1}{3}\right)^{n+1}} \right| = 3. R = n → ∞ lim ∣ ∣ ( n + 1 ) ( 3 1 ) n + 1 n ( 3 1 ) n ∣ ∣ = 3.
If x = 3 , x=3, x = 3 , then ∑ n = 0 ∞ n ( x 3 ) n = ∑ n = 0 ∞ n = + ∞ . \sum\limits_{n=0}^{\infty} n\left(\dfrac{x}{3}\right)^n = \sum\limits_{n=0}^{\infty} n = +\infty. n = 0 ∑ ∞ n ( 3 x ) n = n = 0 ∑ ∞ n = + ∞.
If x = − 3 , x=-3, x = − 3 , then ∑ n = 0 ∞ n ( x 3 ) n = ∑ n = 0 ∞ ( − 1 ) n n , \sum\limits_{n=0}^{\infty} n\left(\dfrac{x}{3}\right)^n = \sum\limits_{n=0}^{\infty} (-1)^nn, n = 0 ∑ ∞ n ( 3 x ) n = n = 0 ∑ ∞ ( − 1 ) n n , this series is not convergent, therefore the interval of convergence is (-3, 3).
Comments