Question #116615
determine the radius and interval of convergence of the given power series

∑ nx^n/3^n
n
=
0
1
Expert's answer
2020-05-24T15:12:55-0400

We should calculate the radius of convergence of the series

n=0nxn3n=n=0n(x3)n.\sum\limits_{n=0}^{\infty} \dfrac{nx^n}{3^n} = \sum\limits_{n=0}^{\infty} n \left(\dfrac{x}{3}\right)^n.

We may use the D'Alembert's rule and calculate the radius of convergence as

R=limnn(13)n(n+1)(13)n+1=3.R = \lim\limits_{n\to\infty} \left| \dfrac{n \left(\dfrac{1}{3}\right)^n}{(n+1) \left(\dfrac{1}{3}\right)^{n+1}} \right| = 3.

If x=3,x=3, then n=0n(x3)n=n=0n=+.\sum\limits_{n=0}^{\infty} n\left(\dfrac{x}{3}\right)^n = \sum\limits_{n=0}^{\infty} n = +\infty.

If x=3,x=-3, then n=0n(x3)n=n=0(1)nn,\sum\limits_{n=0}^{\infty} n\left(\dfrac{x}{3}\right)^n = \sum\limits_{n=0}^{\infty} (-1)^nn, this series is not convergent, therefore the interval of convergence is (-3, 3).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS