"f(x)=-x, x\\in[-1,1]"
"f(x)=\\frac{a_0}{2}+\\sum\\limits^{\\infty}_{m=1}(a_m\\cos(m\\pi x)+b_m\\sin(m\\pi x))"
where
"a_m=\\int\\limits^{1}_{-1}(-x)\\cos(m\\pi x)dx, m=0,1,2,...\\\\\nb_m=\\int\\limits^{1}_{-1}(-x)\\sin(m\\pi x)dx, m=1,2,..."
Let "m=0"
"a_0=\\int\\limits^{1}_{-1}(-x)dx=-\\frac{x^2}{2}|^{1}_{-1}=-\\frac{1}{2}+\\frac{1}{2}=0\\\\\na_m=\\int\\limits^{1}_{-1}(-x)\\cos(m\\pi x)dx=-\\frac{x}{\\pi m}\\sin( m\\pi x)|^{1}_{-1}+\\\\\n+\\frac{1}{\\pi m}\\int\\limits^{1}_{-1}\\sin(m\\pi x)dx=-\\frac{1}{(\\pi m)^2}\\cos (m\\pi x)|^{1}_{-1}=\\\\\n=-\\frac{1}{(\\pi m)^2}(\\cos m\\pi- \\cos m\\pi)=0\\\\\nb_m=\\int\\limits^{1}_{-1}(-x)\\sin(m\\pi x)dx=\\frac{x}{\\pi m}\\cos (m\\pi x)|^{1}_{-1}-\\\\\n-\\frac{1}{\\pi m}\\int\\limits^{1}_{-1}\\cos(m\\pi x)dx=\\frac{2}{\\pi m}\\cos m\\pi -\\\\\n-\\frac{1}{(\\pi m)^2}\\sin (m\\pi x)|^{1}_{-1}=\\frac{2}{\\pi m}(-1)^m\\\\"
"-x=\\sum\\limits^{\\infty}_{m=1}\\frac{2}{\\pi m}(-1)^m\\sin(m\\pi x)\\\\"
Comments
Leave a comment