Question #116600
Obtain the Fourier series for the function f whose definition in one period is f(x)= -x, -1≤x≤1.Sketch the graph of f
1
Expert's answer
2020-05-18T19:06:57-0400

f(x)=x,x[1,1]f(x)=-x, x\in[-1,1]

f(x)=a02+m=1(amcos(mπx)+bmsin(mπx))f(x)=\frac{a_0}{2}+\sum\limits^{\infty}_{m=1}(a_m\cos(m\pi x)+b_m\sin(m\pi x))

where

am=11(x)cos(mπx)dx,m=0,1,2,...bm=11(x)sin(mπx)dx,m=1,2,...a_m=\int\limits^{1}_{-1}(-x)\cos(m\pi x)dx, m=0,1,2,...\\ b_m=\int\limits^{1}_{-1}(-x)\sin(m\pi x)dx, m=1,2,...

Let m=0m=0

a0=11(x)dx=x2211=12+12=0am=11(x)cos(mπx)dx=xπmsin(mπx)11++1πm11sin(mπx)dx=1(πm)2cos(mπx)11==1(πm)2(cosmπcosmπ)=0bm=11(x)sin(mπx)dx=xπmcos(mπx)111πm11cos(mπx)dx=2πmcosmπ1(πm)2sin(mπx)11=2πm(1)ma_0=\int\limits^{1}_{-1}(-x)dx=-\frac{x^2}{2}|^{1}_{-1}=-\frac{1}{2}+\frac{1}{2}=0\\ a_m=\int\limits^{1}_{-1}(-x)\cos(m\pi x)dx=-\frac{x}{\pi m}\sin( m\pi x)|^{1}_{-1}+\\ +\frac{1}{\pi m}\int\limits^{1}_{-1}\sin(m\pi x)dx=-\frac{1}{(\pi m)^2}\cos (m\pi x)|^{1}_{-1}=\\ =-\frac{1}{(\pi m)^2}(\cos m\pi- \cos m\pi)=0\\ b_m=\int\limits^{1}_{-1}(-x)\sin(m\pi x)dx=\frac{x}{\pi m}\cos (m\pi x)|^{1}_{-1}-\\ -\frac{1}{\pi m}\int\limits^{1}_{-1}\cos(m\pi x)dx=\frac{2}{\pi m}\cos m\pi -\\ -\frac{1}{(\pi m)^2}\sin (m\pi x)|^{1}_{-1}=\frac{2}{\pi m}(-1)^m\\


x=m=12πm(1)msin(mπx)-x=\sum\limits^{\infty}_{m=1}\frac{2}{\pi m}(-1)^m\sin(m\pi x)\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS