The Maclaurin series is just the special case for the Taylor series centered around "a=0" .
So, "f(x)= f(0) + \\frac{f'(0)}{1} x + \\frac{f''(0)}{2!} x^2 + \\frac{f'''(0)}{3!} x^3 + ...."
Given "g(x) = sin^2 x = \\frac{1}{2} (1-cos(2x))".
Assume "f(x)=cos(2x) \\implies f(0)=cos(0)= 1"
"f'(x) = -2sin(2x) \\implies f'(0) = 0"
"f''(x)=-4cos(2x) \\implies f''(0) = -4"
"f'''(x)=8sin(2x) \\implies f'''(0) = 0"
"f''''(x)=16cos(2x) \\implies f''''(0) = 16" and so on.
So, "cos(2x)= 1 + \\frac{-4}{2!} x^2 + \\frac{16}{4!} x^4 + .... = 1 - 2 x^2 + \\frac{2}{3} x^4 + ...."
So, "sin^2 x = \\frac{1}{2} [1 - (1-2x^2 + \\frac{2}{3} x^4 + ... ) ] = x^2 - \\frac{1}{3} x^4 + ...."
Comments
Leave a comment