Question #116597
Find the Maclaurian series for sin^2x. (Hint: Use the identity sin^2x=1/2(1-cos2x)
1
Expert's answer
2020-05-18T19:12:48-0400

The Maclaurin series is just the special case for the Taylor series centered around a=0a=0 .

So, f(x)=f(0)+f(0)1x+f(0)2!x2+f(0)3!x3+....f(x)= f(0) + \frac{f'(0)}{1} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + ....

Given g(x)=sin2x=12(1cos(2x))g(x) = sin^2 x = \frac{1}{2} (1-cos(2x)).

Assume f(x)=cos(2x)    f(0)=cos(0)=1f(x)=cos(2x) \implies f(0)=cos(0)= 1

f(x)=2sin(2x)    f(0)=0f'(x) = -2sin(2x) \implies f'(0) = 0

f(x)=4cos(2x)    f(0)=4f''(x)=-4cos(2x) \implies f''(0) = -4

f(x)=8sin(2x)    f(0)=0f'''(x)=8sin(2x) \implies f'''(0) = 0

f(x)=16cos(2x)    f(0)=16f''''(x)=16cos(2x) \implies f''''(0) = 16 and so on.

So, cos(2x)=1+42!x2+164!x4+....=12x2+23x4+....cos(2x)= 1 + \frac{-4}{2!} x^2 + \frac{16}{4!} x^4 + .... = 1 - 2 x^2 + \frac{2}{3} x^4 + ....

So, sin2x=12[1(12x2+23x4+...)]=x213x4+....sin^2 x = \frac{1}{2} [1 - (1-2x^2 + \frac{2}{3} x^4 + ... ) ] = x^2 - \frac{1}{3} x^4 + ....


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS