The Maclaurin series is just the special case for the Taylor series centered around a=0 .
So, f(x)=f(0)+1f′(0)x+2!f′′(0)x2+3!f′′′(0)x3+....
Given g(x)=sin2x=21(1−cos(2x)).
Assume f(x)=cos(2x)⟹f(0)=cos(0)=1
f′(x)=−2sin(2x)⟹f′(0)=0
f′′(x)=−4cos(2x)⟹f′′(0)=−4
f′′′(x)=8sin(2x)⟹f′′′(0)=0
f′′′′(x)=16cos(2x)⟹f′′′′(0)=16 and so on.
So, cos(2x)=1+2!−4x2+4!16x4+....=1−2x2+32x4+....
So, sin2x=21[1−(1−2x2+32x4+...)]=x2−31x4+....
Comments