"r(t)=[{\\cos(3t),\\sin(3t),3t}]"
"r'(t)=[{-3\\sin(3t),3\\cos(3t),3}]"
"\\begin{vmatrix}\n r'(t)\n\\end{vmatrix}=\\sqrt{(-3\\sin(3t)^2+(3\\cos(3t))^2+3^2}=\\\\=3\\sqrt{2}"
The length of the curve ="\\int_0^\\pi3\\sqrt{2}dt=3\\sqrt{2}\\pi"
Answer: a."3\\sqrt2\\pi" .
Comments
Leave a comment