The problem (1):-
Since "1-x^{2}>0" when "-1<x<1" and then "\\left|1-x^{2}\\right|=1-x^{2}"
"\\begin{array}{l}\n\\text { But } 1-x^{2}<0 \\quad \\text { when } \\quad 1<x \\text { or } x<-1, \\text { thus }\n\n \\\\\n\\left|1-x^{2}\\right|=x^{2}-1\n\\end{array}"
Thus
"\\begin{array}{l}\n\\int_{-2}^{2}\\left|1-x^{2}\\right| d x \\\\\n=\\int_{-2}^{-1}\\left|1-x^{2}\\right| d x+\\int_{-1}^{1}\\left|1-x^{2}\\right| d x+\\int_{1}^{2}\\left|1-x^{2}\\right| d x \\\\\n=\\int_{-2}^{-1}\\left(x^{2}-1\\right) d x \\\\\n+\\int_{-1}^{1}\\left(1-x^{2}\\right) d x+\\int_{1}^{2}\\left(x^{2}-1\\right) d x \\\\\n=\\left(\\frac{x^{3}}{3}-x\\right)_{-2}^{-1}+\\left(x-\\frac{x^{3}}{3}\\right)_{-1}^{1}+\\left(\\frac{x^{3}}{3}-x\\right)_{1}^{2} \\\\\n=\\left(\\frac{-1}{3}+1\\right)-\\left(\\frac{-8}{3}+2\\right)+\\left(\\frac{-1}{3}+1\\right) \\\\\n=4\n\\end{array}"
The problem (2):-
Since "2 x+3>0" when "x>\\frac{-3}{2}" , then "|2 x+3|=2 x+3"
But "2x+3<0" when "x<\\frac{-3}{2}" , thus "|2 x+3|=-2 x-3"
Therefore we can find the value of the following integral
"\\begin{array}{l}\n\\int_{-2}^{2}|2 x+3| d x=\\int_{-2}^{\\frac{-3}{2}}|2 x+3| d x\n+\\int_{-3}^{2}|2 x+3| d x \\\\\n=\\int_{-2}^{\\frac{-3}{2}}(-2 x-3) d x+\\int_{\\frac{-3}{2}}^{2}(2 x+3) d x \\\\\n=\\left(-x^{2}-3 x\\right)_{-2}^{\\frac{-3}{2}}+\\left(x^{2}+3 x\\right)_{\\frac{-3}{2}}^{2} \\\\\n\n=\\left(-\\frac{9}{4}+\\frac{9}{2}\\right)-(-4+6)+(4+6)-\\left(\\frac{9}{4}-\\frac{9}{2}\\right) \\\\\n=\\frac{25}{2}\n\\end{array}"
Comments
Leave a comment