The line of cycloids is set parametrically. When it comes to the first arch, then there is a limitation:
"0<0<2\\pi" and then the first arch is drawn when the parameter value changes within: "0\\le t \\le 2\\pi". We use the formula for finding the body volume formed by a line given parametrically: "V=\\pi \\int_a^bf^2(t)x\\prime(t)dt". Substitute ve into the formula and get: "V=\\pi\\int^{2\\pi}_0(a(1-\\cos{\\theta})(a(\\theta+\\sin{\\theta})^\\prime d\\theta=\\pi\\int^{2\\pi}_0(a(1-\\cos{\\theta})(\\theta+\\cos{\\theta})d\\theta=\\pi\\int^{2\\pi}_0(a\\theta-a\\cos^2{\\theta}+a\\cos{\\theta}-\nax\\cos{\\theta)}d\\theta=-a\\pi\\int^{2\\pi}_0(\\frac{1}{2}\\cos{2\\theta}+\\frac{1}{2})d\\theta-a\\pi\\int^{2\\pi}_0\\theta\\cos{\\theta}d\\theta+a\\pi\\int^{2\\pi}_0\\cos{\\theta}d\\theta+a\\pi\\int^{2\\pi}_0\\theta d\\theta=\\pi^2(2\\pi-1)a"
Comments
Leave a comment