Question #115620
Let v be a vector in Rn, then ||v|| is a scalar.
Select one:
a. False
b. True
1
Expert's answer
2020-05-18T17:32:20-0400

the answer is (b) true

Let v be a vector in Rn in the form v=(v1,v2,v3,.....,vn)v=(v_{1}, v_{2}, v_{3}, . . . . ., v_{n}) ,

then

v12=(v1)2+(v2)2+(v3)2+.....+(vn)2|| v_{1} ||^{2}= (v_{1})^{2}+ (v_{2})^{2}+(v_{3})^{2}+ . . . . .+(v_{n})^{2}

since v1,v2,v3,.....,vnv_{1}, v_{2}, v_{3}, . . . . ., v_{n} are real numbers , then

(v1)2+(v2)2+(v3)2+.....+(vn)2(v_{1})^{2}+ (v_{2})^{2}+(v_{3})^{2}+ . . . . .+(v_{n})^{2} is a positive real number ( scalar )

Thus v1=v12+v22+v32+...+vn2|| v_1 ||= \sqrt{v_1^2+ v_{2}^2+v_{3}^2+ ...+v_n^2} is a positive real number,

i.e. v1|| v_{1} || is scalar.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS