the answer is (b) true
Let v be a vector in Rn in the form v=(v1,v2,v3,.....,vn) ,
then
∣∣v1∣∣2=(v1)2+(v2)2+(v3)2+.....+(vn)2
since v1,v2,v3,.....,vn are real numbers , then
(v1)2+(v2)2+(v3)2+.....+(vn)2 is a positive real number ( scalar )
Thus ∣∣v1∣∣=v12+v22+v32+...+vn2 is a positive real number,
i.e. ∣∣v1∣∣ is scalar.
Comments