f(x)=∑i=1∞f(i)(a)/i!∗(x−a)if(x)=\sum\limits_{i=1}^{\infty}f^{(i)}(a)/i!*(x-a)^if(x)=i=1∑∞f(i)(a)/i!∗(x−a)i
sin(π)=∑i=1∞f(2∗i−1)(π)/(2∗i−1)!∗(x−π)2∗i−1sin(\pi)=\sum\limits_{i=1}^{\infty}f^{(2*i-1)}(\pi)/(2*i-1)!*(x-\pi)^{2*i-1}sin(π)=i=1∑∞f(2∗i−1)(π)/(2∗i−1)!∗(x−π)2∗i−1
The Taylor Series of sin(x) with center π : -(x-π)+1/6*(x-π)^3-1/120*(x-π)^5+1/5040*(x-π)^7+...
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments