let time be measured in millions. then given that
half life =1.5 billion years
=1500 million years
then N(1500)=(total amount of radioactive)/2
this implies
N(1500)=N0/2
let N(t) be the remaining amount after time t
and N0 be the initial amount of radioactive substance.
then
by decaying model "N(t)=N\\omicron e^{\\phantom{i}-kt}"
implying
"N\\omicron\/2=N\\omicron e^{\\phantom{i}-1500k}\\\\1\/2=e^{\\phantom{i}-1500k}\\\\\\implies (2)^{\\phantom{i}-1\/1500}=e^{\\phantom{i}-k}"
"\\therefore N(t)=N\\omicron( ( e)^{\\phantom{}-k})^{\\phantom{}t}\\\\\\implies N(t)=N\\omicron( ( 2)^{\\phantom{}-1\/1500})^{\\phantom{}t}\\\\\\implies N(t)=N\\omicron ( 2)^{\\phantom{}-t\/1500}"
t=70
"N(70)=N\\omicron ( 2)^{\\phantom{}-70\/1500}\\implies N(70)=N\\omicron\\phantom{i}0.968171\\\\\n=96.82\\phantom{k}percent \\phantom{k}of \\phantom{k}initial\\phantom{k}quantity"
t=500
"N(500)=N\\omicron ( 2)^{\\phantom{}-500\/1500}\\implies N(500)=N\\omicron\\phantom{i}0.793701\\\\\n=79.37\\phantom{k}percent \\phantom{k}of \\phantom{k}initial\\phantom{k}quantity"
given that "N(t)\\geqslant N\\omicron\\ 0.01 =N\\omicron\/100"
"N(t)=N\\omicron ( 2)^{\\phantom{}-t\/1500}\\geqslant N\\omicron\/100\\\\\\implies N\\omicron ( 2)^{\\phantom{}-t\/1500}\\geqslant N\\omicron\/100\\\\ ( 2)^{\\phantom{}-t\/1500}\\geqslant 1\/100\\\\\\implies( 2)^{\\phantom{}t\/1500}\\geqslant 100"
make t the subject from the inequality
"t\/1500 ln(2)\\geqslant ln(100)\\\\t\\geqslant 1500(ln(100)\/ln(2))\\\\\\implies t\\geqslant 9965.784285\\phantom{i}million\\phantom{i}years\\\\\\implies t\\simeq 9965784285 \\phantom{i} years"
Comments
Leave a comment