Question #112051
Evaluate the ∫∫s y dS where S is the portion of the cylinder x2 + y2 = 3 that lies between z = 0 and z = 3.
1
Expert's answer
2020-04-28T16:52:36-0400

Consider the surface SS , which is the portion of the cylinder x2+y2=3x^2+y^2=3 lies between the planes z=0z=0 and z=3z=3 .


Let x=3cosux=\sqrt{3}\cos u , y=3sinuy=\sqrt{3}\sin u and z=vz=v , where 0u2π,0v30\leq u \leq2\pi, 0 \leq v \leq 3


So, the parametric equation of surface can be represented as,



r(u,v)=3cosu,3sinu,vr(u,v)=⟨\sqrt{3}\cos u,\sqrt{3}\sin u,v ⟩


The normal to thee surface SS is,



ru×rv=ijk3sin(u)3cos(u)0001=3cos(u),3sin(u),0r_u×r_v=\begin{Vmatrix} i & j & k \\ -\sqrt{3}\sin(u) & \sqrt{3}\cos(u) & 0\\ 0 & 0 & 1 \end{Vmatrix} =⟨\sqrt{3}\cos(u),\sqrt{3}\sin(u),0 ⟩

Now, find the surface integral as,


S(y)dS=uv(3sinu)ru×rvdudv\iint_S(y)dS=\iint_{uv}(\sqrt{3}\sin u)∥ r_u×r_v∥dudv


=02π033sinu(3sinu)2+(3cosu)2dvdu=\int_{0}^{2\pi}\int_{0}^{3}\sqrt{3}\sin u \sqrt{(\sqrt{3}\sin u)^2+(\sqrt{3}\cos u)^2}dvdu

=02π033sinu(3)dvdu=\int_{0}^{2\pi}\int_{0}^{3}\sqrt{3}\sin u (\sqrt{3})dvdu

=02π033sinudvdu=\int_{0}^{2\pi}\int_{0}^{3}3\sin u dvdu

=3[cosu]02π[v]03=3[-\cos u ]_{0}^{2\pi}[ v]_{0}^{3}

=3(11)(30)=-3(1-1)(3-0)

=3(0)(3)=-3(0)(3)

=0=0


Therefore, the surface integral is S(y)dS=0\iint_S(y)dS=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS