Consider the surface S S S , which is the portion of the cylinder x 2 + y 2 = 3 x^2+y^2=3 x 2 + y 2 = 3 lies between the planes z = 0 z=0 z = 0 and z = 3 z=3 z = 3 .
Let x = 3 cos u x=\sqrt{3}\cos u x = 3 cos u , y = 3 sin u y=\sqrt{3}\sin u y = 3 sin u and z = v z=v z = v , where 0 ≤ u ≤ 2 π , 0 ≤ v ≤ 3 0\leq u \leq2\pi, 0 \leq v \leq 3 0 ≤ u ≤ 2 π , 0 ≤ v ≤ 3
So, the parametric equation of surface can be represented as,
r ( u , v ) = ⟨ 3 cos u , 3 sin u , v ⟩ r(u,v)=⟨\sqrt{3}\cos u,\sqrt{3}\sin u,v ⟩ r ( u , v ) = ⟨ 3 cos u , 3 sin u , v ⟩
The normal to thee surface S S S is,
r u × r v = ∥ i j k − 3 sin ( u ) 3 cos ( u ) 0 0 0 1 ∥ = ⟨ 3 cos ( u ) , 3 sin ( u ) , 0 ⟩ r_u×r_v=\begin{Vmatrix}
i & j & k \\
-\sqrt{3}\sin(u) & \sqrt{3}\cos(u) & 0\\
0 & 0 & 1
\end{Vmatrix}
=⟨\sqrt{3}\cos(u),\sqrt{3}\sin(u),0 ⟩ r u × r v = ∥ ∥ i − 3 sin ( u ) 0 j 3 cos ( u ) 0 k 0 1 ∥ ∥ = ⟨ 3 cos ( u ) , 3 sin ( u ) , 0 ⟩
Now, find the surface integral as,
∬ S ( y ) d S = ∬ u v ( 3 sin u ) ∥ r u × r v ∥ d u d v \iint_S(y)dS=\iint_{uv}(\sqrt{3}\sin u)∥ r_u×r_v∥dudv ∬ S ( y ) d S = ∬ uv ( 3 sin u ) ∥ r u × r v ∥ d u d v
= ∫ 0 2 π ∫ 0 3 3 sin u ( 3 sin u ) 2 + ( 3 cos u ) 2 d v d u =\int_{0}^{2\pi}\int_{0}^{3}\sqrt{3}\sin u \sqrt{(\sqrt{3}\sin u)^2+(\sqrt{3}\cos u)^2}dvdu = ∫ 0 2 π ∫ 0 3 3 sin u ( 3 sin u ) 2 + ( 3 cos u ) 2 d v d u
= ∫ 0 2 π ∫ 0 3 3 sin u ( 3 ) d v d u =\int_{0}^{2\pi}\int_{0}^{3}\sqrt{3}\sin u (\sqrt{3})dvdu = ∫ 0 2 π ∫ 0 3 3 sin u ( 3 ) d v d u
= ∫ 0 2 π ∫ 0 3 3 sin u d v d u =\int_{0}^{2\pi}\int_{0}^{3}3\sin u dvdu = ∫ 0 2 π ∫ 0 3 3 sin u d v d u
= 3 [ − cos u ] 0 2 π [ v ] 0 3 =3[-\cos u ]_{0}^{2\pi}[ v]_{0}^{3} = 3 [ − cos u ] 0 2 π [ v ] 0 3
= − 3 ( 1 − 1 ) ( 3 − 0 ) =-3(1-1)(3-0) = − 3 ( 1 − 1 ) ( 3 − 0 )
= − 3 ( 0 ) ( 3 ) =-3(0)(3) = − 3 ( 0 ) ( 3 )
= 0 =0 = 0
Comments