Consider the surface S , which is the portion of the cylinder x2+y2=3 lies between the planes z=0 and z=3 .
Let x=3cosu , y=3sinu and z=v , where 0≤u≤2π,0≤v≤3
So, the parametric equation of surface can be represented as,
r(u,v)=⟨3cosu,3sinu,v⟩
The normal to thee surface S is,
ru×rv=∥∥i−3sin(u)0j3cos(u)0k01∥∥=⟨3cos(u),3sin(u),0⟩
Now, find the surface integral as,
∬S(y)dS=∬uv(3sinu)∥ru×rv∥dudv
=∫02π∫033sinu(3sinu)2+(3cosu)2dvdu
=∫02π∫033sinu(3)dvdu
=∫02π∫033sinudvdu
=3[−cosu]02π[v]03
=−3(1−1)(3−0)
=−3(0)(3)
=0
Comments