2020-04-23T17:49:01-04:00
Use triple integral to find the volume of region that is below z=8-x^2-y^2 above z=-√4x^2+4y^2 and inside x^2+y^2=4
1
2020-04-29T16:43:16-0400
Then,
V = ∭ M 1 d x d y d z = ∬ x 2 + y 2 ≤ 4 ( ∫ − 2 x 2 + y 2 8 − ( x 2 + y 2 ) 1 d z ) d x d y = = ∬ x 2 + y 2 ≤ 4 ( 8 − ( x 2 + y 2 ) − ( − 2 x 2 + y 2 ) ) d x d y = = ∬ x 2 + y 2 ≤ 4 ( 8 − ( x 2 + y 2 ) + 2 x 2 + y 2 ) d x d y = = [ Pass to polar coordinates : x = ρ ⋅ cos θ y = ρ ⋅ sin θ x 2 + y 2 = ρ 2 d x d y = ρ ⋅ d ρ d θ ρ ∈ [ 0 ; 2 ] θ ∈ [ 0 ; 2 π ] ] = = ∫ 0 2 π d θ ⋅ ( ∫ 0 2 ( 8 − ρ 2 + 2 ρ ) ρ d ρ ) = = θ ∣ 0 2 π ⋅ ( ( 8 ρ − ρ 3 3 + ρ 2 ) ∣ 0 2 ) = = 2 π ⋅ ( 8 ⋅ 2 − 2 3 3 + 2 2 ) = 2 π ⋅ ( 16 ⋅ 3 − 8 + 4 ⋅ 3 3 ) = = 2 π ⋅ 52 3 = 104 π 3 ≈ 108.9085 V=\iiint\limits_{M}1dxdydz=\iint\limits_{x^2+y^2\le4}\left(\int\limits_{-2\sqrt{x^2+y^2}}^{8-\left(x^2+y^2\right)} 1dz\right)dxdy=\\[0.3cm]
=\iint\limits_{x^2+y^2\le4}\left(8-\left(x^2+y^2\right)-\left(-2\sqrt{x^2+y^2}\right)\right)dxdy=\\[0.3cm]
=\iint\limits_{x^2+y^2\le4}\left(8-\left(x^2+y^2\right)+2\sqrt{x^2+y^2}\right)dxdy=\\[0.3cm]
=\left[\text{Pass to polar coordinates} :\\
\begin{array}{l}
x=\rho\cdot\cos\theta\\
y=\rho\cdot\sin\theta\\
x^2+y^2=\rho^2\\
dxdy=\rho\cdot d\rho d\theta\\
\rho\in[0;2]\\
\theta\in[0;2\pi]
\end{array}\right]=\\[0.3cm]
=\int\limits_0^{2\pi}d\theta\cdot\left(\int\limits_0^2\left(8-\rho^2+2\rho\right)\rho d\rho\right)=\\[0.3cm]
=\left.\theta\right|_0^{2\pi}\cdot\left(\left.\left(8\rho-\frac{\rho^3}{3}+\rho^2\right)\right|_0^2\right)=\\[0.3cm]
=2\pi\cdot\left(8\cdot 2-\frac{2^3}{3}+2^2\right)=2\pi\cdot\left(\frac{16\cdot 3-8+4\cdot 3}{3}\right)=\\[0.3cm]
=\frac{2\pi\cdot 52}{3}=\frac{104\pi}{3}\approx 108.9085 V = M ∭ 1 d x d y d z = x 2 + y 2 ≤ 4 ∬ ⎝ ⎛ − 2 x 2 + y 2 ∫ 8 − ( x 2 + y 2 ) 1 d z ⎠ ⎞ d x d y = = x 2 + y 2 ≤ 4 ∬ ( 8 − ( x 2 + y 2 ) − ( − 2 x 2 + y 2 ) ) d x d y = = x 2 + y 2 ≤ 4 ∬ ( 8 − ( x 2 + y 2 ) + 2 x 2 + y 2 ) d x d y = = ⎣ ⎡ Pass to polar coordinates : x = ρ ⋅ cos θ y = ρ ⋅ sin θ x 2 + y 2 = ρ 2 d x d y = ρ ⋅ d ρ d θ ρ ∈ [ 0 ; 2 ] θ ∈ [ 0 ; 2 π ] ⎦ ⎤ = = 0 ∫ 2 π d θ ⋅ ⎝ ⎛ 0 ∫ 2 ( 8 − ρ 2 + 2 ρ ) ρ d ρ ⎠ ⎞ = = θ ∣ 0 2 π ⋅ ( ( 8 ρ − 3 ρ 3 + ρ 2 ) ∣ ∣ 0 2 ) = = 2 π ⋅ ( 8 ⋅ 2 − 3 2 3 + 2 2 ) = 2 π ⋅ ( 3 16 ⋅ 3 − 8 + 4 ⋅ 3 ) = = 3 2 π ⋅ 52 = 3 104 π ≈ 108.9085
Conclusion,
V = 104 π 3 ≈ 108.9085 \boxed{V=\frac{104\pi}{3}\approx108.9085} V = 3 104 π ≈ 108.9085
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments