Answer to Question #111844 in Calculus for sohaib
2020-04-23T17:49:01-04:00
Use a double integral to derive the area of the region between circles of radius a and b with
α
≤
θ
≤
β
α≤θ≤β
. See the image below for a sketch of the region.
1
2020-04-29T16:37:30-0400
"S=\\iint\\limits_{\\begin{matrix}\n a^2\\le x^2+y^2\\le b^2\\\\\n \\alpha\\le\\theta\\le\\beta\n\\end{matrix}}1dxdy\n=\\left[\\begin{array}{l}\nx=r\\cdot\\cos\\theta\\\\\ny=r\\cdot\\sin\\theta\\\\\ndxdy=rdrd\\theta\\\\\nr\\in[a;b]\\\\\n\\alpha\\le\\theta\\le\\beta\n\\end{array}\\right]=\\\\[0.3cm]\n=\\int\\limits_\\alpha^\\beta d\\theta\\cdot\\left(\\int\\limits_a^brdr\\right)=\\left.\\theta\\right|_\\alpha^\\beta\\cdot\\left(\\left.\\frac{r^2}{2}\\right|_a^b\\right)=\\left(\\beta-\\alpha\\right)\\cdot\\frac{b^2-a^2}{2}"
Conclusion,
"\\boxed{S=\\frac{\\left(\\beta-\\alpha\\right)\\cdot\\left(b^2-a^2\\right)}{2}}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment