∫(3t2+2e3t+1/t+cos3t)dt=3∫t2dt+2∫e3tdt+∫dt/t+∫cos(3t)dt=∫(3t^2+2e^{3t} +1/t+cos3t)dt=3∫t^2 dt+2∫e^{3t}dt +∫dt/t+∫cos(3t)dt=∫(3t2+2e3t+1/t+cos3t)dt=3∫t2dt+2∫e3tdt+∫dt/t+∫cos(3t)dt= =3⋅(1/3)t3+2⋅(1/3)ⅇ3t+ln∣t∣+(1/3)sin(3t)+C=t3+(2/3)ⅇ3t+ln∣t∣+(1/3)sin(3t)+C=3⋅(1/3) t^3+2⋅(1/3) ⅇ^{3t}+ln|t|+(1/3) sin(3t)+C=t^3+(2/3) ⅇ^{3t}+ln|t|+(1/3) sin(3t)+C\\=3⋅(1/3)t3+2⋅(1/3)ⅇ3t+ln∣t∣+(1/3)sin(3t)+C=t3+(2/3)ⅇ3t+ln∣t∣+(1/3)sin(3t)+C
2)∫(x/2+3x2)dx=(1/2)∫xdx+3∫x2dx=\\2) ∫( x/2+3x^2)dx=(1/2) ∫xdx+3∫x^2 dx=2)∫(x/2+3x2)dx=(1/2)∫xdx+3∫x2dx=
=(1/2)⋅(1/2)x2+3⋅(1/3)x3+C=(1/4)x2+x3+C=(1/2)⋅(1/2) x^2+3⋅(1/3) x^3+C=(1/4) x^2+x^3+C=(1/2)⋅(1/2)x2+3⋅(1/3)x3+C=(1/4)x2+x3+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments