Question #110661
[img]https://upload.cc/i1/2020/04/18/6EeNfM.jpg[/img]


question in photo,R=4
1
Expert's answer
2020-04-27T18:12:11-0400

a) f(x)=(x6)e7xf(x)=(x-6)e^{-7x}

i)

f(x)=e7x7(x6)e7x=e7x(437x)f(x)=0e7x0437x=0x=437f'(x)=e^{-7x}-7(x-6)e^{-7x}=e^{-7x}(43-7x)\\ f'(x)=0\\ e^{-7x}\neq0\quad 43-7x=0\\ x=\frac{43}{7}\\

if x(,437),f(x)>0x\in(-\infty,\frac{43}{7}), f'(x)>0 then ff is strictly increasing

if x(437,),f(x)<0x\in(\frac{43}{7},\infty), f'(x)<0 then ff is strictly decreasing


ii)

f(x)=7e7x(437x)7e7x==7e7x(447x)f(x)=0x=447f''(x)=-7e^{-7x}(43-7x)-7e^{-7x}=\\ =-7e^{-7x}(44-7x)\\ f''(x)=0\\ x=\frac{44}{7}

if x(,447),f(x)<0x\in (-\infty,\frac{44}{7}),f''(x)<0 then ff is concave

if x(447,),f(x)>0x\in (\frac{44}{7},\infty), f''(x)>0 then ff is convex


iii) x=437x=\frac{43}{7} is a point of max

x=447x=\frac{44}{7} is a point of inflexion

iiii)

the vertical asymptote does not exist


the horizontal asymptote

limxx6e7x=0\lim\limits_{x\to\infty}\frac{x-6}{e^{7x}}=0

the horizontal asymptote y=0y=0


the slant asymptote can be found in form

y=kx+by=kx+b

let

x+k=limx+f(x)x=limx+(x6)e7xx=0b=limx+(f(x)kx)=limx+(x6)e7x=0x\to+\infty\\ k=\lim\limits_{x\to+\infty}\frac{f(x)}{x}=\lim\limits_{x\to+\infty}\frac{(x-6)e^{-7x}}{x}=0\\ b=\lim\limits_{x\to+\infty}(f(x)-kx)=\lim\limits_{x\to+\infty}\frac{(x-6)}{e^{7x}}=0

tnen y=0y=0 is a slant asymptote

let

xk=limxf(x)x=limx(x6)e7xx=x\to-\infty\\ k=\lim\limits_{x\to-\infty}\frac{f(x)}{x}=\lim\limits_{x\to-\infty}\frac{(x-6)e^{-7x}}{x}=\infty

then a slant asymptote does not exist


b) f=x2+3x(x1)2,x1f=\frac{x^2+3x}{(x-1)^2}, x\neq1

i)

f(x)=(2x+3)(x1)22(x1)(x2+3x)(x1)4==5x3(x1)3f(x)=0x=35f'(x)=\frac{(2x+3)(x-1)^2-2(x-1)(x^2+3x)}{(x-1)^4}=\\ =\frac{-5x-3}{(x-1)^3}\\ f'(x)=0\\ x=-\frac{3}{5}

if x(,35)(1,+),f(x)<0x\in (-\infty,-\frac{3}{5})\cup(1,+\infty), f'(x)<0 then ff is strictly decreasing

if f(35,1),f(x)>0f\in(-\frac{3}{5},1), f'(x)>0 then ff is strictly increasing


ii)

f=5(x1)3(x1)2(5x3)(x1)6=10x+14(x1)4x=75f''=\frac{-5(x-1)^3-(x-1)^2(-5x-3)}{(x-1)^6}=\frac{10x+14}{(x-1)^4}\\ x=-\frac{7}{5}

if x(75,1)(1,),f(x)>0x\in(-\frac{7}{5},1)\cup(1,\infty), f''(x)>0 then ff is convex

if x(,75),f(x)<0x\in(-\infty, -\frac{7}{5}), f''(x)<0 then ff is concave


iii)

x=35x=-\frac{3}{5} is a point of min

x=75x=-\frac{7}{5} is a point of inflexion


iiii)

x=1x=1 is the vertical asymptote


the horizontal asymptote

limxx2+3x(x1)2=1\lim\limits_{x\to\infty}\frac{x^2+3x}{(x-1)^2}=1

y=1y=1 is a horizontal asymptote


the slant asymptote can be found in form

y=kx+by=kx+b

k=limxf(x)x=limxx2+3xx(x1)2=0b=limx(f(x)kx)=limxx2+3x(x1)2=1k=\lim\limits_{x\to\infty}\frac{f(x)}{x}=\lim\limits_{x\to\infty}\frac{x^2+3x}{x(x-1)^2}=0\\ b=\lim\limits_{x\to\infty}(f(x)-kx)=\lim\limits_{x\to\infty}\frac{x^2+3x}{(x-1)^2}=1

tnen y=1y=1 is a slant asymptote


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS