a) "f(x)=(x-6)e^{-7x}"
i)
"f'(x)=e^{-7x}-7(x-6)e^{-7x}=e^{-7x}(43-7x)\\\\\nf'(x)=0\\\\\ne^{-7x}\\neq0\\quad 43-7x=0\\\\\nx=\\frac{43}{7}\\\\"
if "x\\in(-\\infty,\\frac{43}{7}), f'(x)>0" then "f" is strictly increasing
if "x\\in(\\frac{43}{7},\\infty), f'(x)<0" then "f" is strictly decreasing
ii)
"f''(x)=-7e^{-7x}(43-7x)-7e^{-7x}=\\\\\n=-7e^{-7x}(44-7x)\\\\\nf''(x)=0\\\\\nx=\\frac{44}{7}"
if "x\\in (-\\infty,\\frac{44}{7}),f''(x)<0" then "f" is concave
if "x\\in (\\frac{44}{7},\\infty), f''(x)>0" then "f" is convex
iii) "x=\\frac{43}{7}" is a point of max
"x=\\frac{44}{7}" is a point of inflexion
iiii)
the vertical asymptote does not exist
the horizontal asymptote
"\\lim\\limits_{x\\to\\infty}\\frac{x-6}{e^{7x}}=0"
the horizontal asymptote "y=0"
the slant asymptote can be found in form
"y=kx+b"
let
"x\\to+\\infty\\\\\nk=\\lim\\limits_{x\\to+\\infty}\\frac{f(x)}{x}=\\lim\\limits_{x\\to+\\infty}\\frac{(x-6)e^{-7x}}{x}=0\\\\\nb=\\lim\\limits_{x\\to+\\infty}(f(x)-kx)=\\lim\\limits_{x\\to+\\infty}\\frac{(x-6)}{e^{7x}}=0"
tnen "y=0" is a slant asymptote
let
"x\\to-\\infty\\\\\nk=\\lim\\limits_{x\\to-\\infty}\\frac{f(x)}{x}=\\lim\\limits_{x\\to-\\infty}\\frac{(x-6)e^{-7x}}{x}=\\infty"
then a slant asymptote does not exist
b) "f=\\frac{x^2+3x}{(x-1)^2}, x\\neq1"
i)
"f'(x)=\\frac{(2x+3)(x-1)^2-2(x-1)(x^2+3x)}{(x-1)^4}=\\\\\n=\\frac{-5x-3}{(x-1)^3}\\\\\nf'(x)=0\\\\\nx=-\\frac{3}{5}"
if "x\\in (-\\infty,-\\frac{3}{5})\\cup(1,+\\infty), f'(x)<0" then "f" is strictly decreasing
if "f\\in(-\\frac{3}{5},1), f'(x)>0" then "f" is strictly increasing
ii)
"f''=\\frac{-5(x-1)^3-(x-1)^2(-5x-3)}{(x-1)^6}=\\frac{10x+14}{(x-1)^4}\\\\\nx=-\\frac{7}{5}"
if "x\\in(-\\frac{7}{5},1)\\cup(1,\\infty), f''(x)>0" then "f" is convex
if "x\\in(-\\infty, -\\frac{7}{5}), f''(x)<0" then "f" is concave
iii)
"x=-\\frac{3}{5}" is a point of min
"x=-\\frac{7}{5}" is a point of inflexion
iiii)
"x=1" is the vertical asymptote
the horizontal asymptote
"\\lim\\limits_{x\\to\\infty}\\frac{x^2+3x}{(x-1)^2}=1"
"y=1" is a horizontal asymptote
the slant asymptote can be found in form
"y=kx+b"
"k=\\lim\\limits_{x\\to\\infty}\\frac{f(x)}{x}=\\lim\\limits_{x\\to\\infty}\\frac{x^2+3x}{x(x-1)^2}=0\\\\\nb=\\lim\\limits_{x\\to\\infty}(f(x)-kx)=\\lim\\limits_{x\\to\\infty}\\frac{x^2+3x}{(x-1)^2}=1"
tnen "y=1" is a slant asymptote
Comments
Leave a comment