a) f(x)=(x−6)e−7x
i)
f′(x)=e−7x−7(x−6)e−7x=e−7x(43−7x)f′(x)=0e−7x=043−7x=0x=743
if x∈(−∞,743),f′(x)>0 then f is strictly increasing
if x∈(743,∞),f′(x)<0 then f is strictly decreasing
ii)
f′′(x)=−7e−7x(43−7x)−7e−7x==−7e−7x(44−7x)f′′(x)=0x=744
if x∈(−∞,744),f′′(x)<0 then f is concave
if x∈(744,∞),f′′(x)>0 then f is convex
iii) x=743 is a point of max
x=744 is a point of inflexion
iiii)
the vertical asymptote does not exist
the horizontal asymptote
x→∞lime7xx−6=0
the horizontal asymptote y=0
the slant asymptote can be found in form
y=kx+b
let
x→+∞k=x→+∞limxf(x)=x→+∞limx(x−6)e−7x=0b=x→+∞lim(f(x)−kx)=x→+∞lime7x(x−6)=0
tnen y=0 is a slant asymptote
let
x→−∞k=x→−∞limxf(x)=x→−∞limx(x−6)e−7x=∞
then a slant asymptote does not exist
b) f=(x−1)2x2+3x,x=1
i)
f′(x)=(x−1)4(2x+3)(x−1)2−2(x−1)(x2+3x)==(x−1)3−5x−3f′(x)=0x=−53
if x∈(−∞,−53)∪(1,+∞),f′(x)<0 then f is strictly decreasing
if f∈(−53,1),f′(x)>0 then f is strictly increasing
ii)
f′′=(x−1)6−5(x−1)3−(x−1)2(−5x−3)=(x−1)410x+14x=−57
if x∈(−57,1)∪(1,∞),f′′(x)>0 then f is convex
if x∈(−∞,−57),f′′(x)<0 then f is concave
iii)
x=−53 is a point of min
x=−57 is a point of inflexion
iiii)
x=1 is the vertical asymptote
the horizontal asymptote
x→∞lim(x−1)2x2+3x=1
y=1 is a horizontal asymptote
the slant asymptote can be found in form
y=kx+b
k=x→∞limxf(x)=x→∞limx(x−1)2x2+3x=0b=x→∞lim(f(x)−kx)=x→∞lim(x−1)2x2+3x=1
tnen y=1 is a slant asymptote
Comments