y=1−(2x+1)24y=0=>1−(2x+1)24=0=>(2x+1)2=4
2x+1=−2 or 2x+1=2
x=−1.5 or x=0.5 Point A(0.5,0)
y′=(1−(2x+1)24)′=−(2x+1)34(−2)(2x+1)′=(2x+1)316
y′0.5)=(2(0.5)+1)316=2 Fnd the equation of the normal at the point A(0.5,0)
slope=m=−y′(0.5)1=−21=−0.5
0=−0.5(0.5)+b=>b=0.25The equation of the normal is y=−0.5x+0.25.
Point B(0,0.25)
S=∫00.5(−0.5x+0.25−(1−(2x+1)24))dx=
=[−0.25x2−0.75x−2x+12]0.50=
=−0.0625−0.375−1+0+0+2=0.5625(units2) The area is 0.5625 square units.
Comments
Leave a comment