Answer to Question #110584 in Calculus for atta

Question #110584
a curve y=1 - 4/(2x+1)square. the curve intersect the x- axes at A . the normal to the curve at A intersects the y- axes at B.
1) obtain expressions for dy/dx and( upper and lower limit ) |ydx
2) find showing all necessary working find all the area under the curve and normal (full)
1
Expert's answer
2020-04-27T18:28:42-0400
y=14(2x+1)2y=1-{4 \over (2x+1)^2}
y=0=>14(2x+1)2=0=>(2x+1)2=4y=0=>1-{4 \over (2x+1)^2}=0=> (2x+1)^2=4

2x+1=2 or 2x+1=22x+1=-2\ or \ 2x+1=2

x=1.5 or x=0.5x=-1.5\ or\ x=0.5

Point A(0.5,0)A(0.5,0)


y=(14(2x+1)2)=4(2)(2x+1)3(2x+1)=16(2x+1)3y'=(1-{4 \over (2x+1)^2})'=-{4(-2) \over (2x+1)^3}(2x+1)'={16 \over (2x+1)^3}

y0.5)=16(2(0.5)+1)3=2y'0.5)={16 \over (2(0.5)+1)^3}=2

Fnd the equation of the normal at the point A(0.5,0)A(0.5,0)


slope=m=1y(0.5)=12=0.5slope=m=-{1 \over y'(0.5)}=-{1 \over 2}=-0.5

0=0.5(0.5)+b=>b=0.250=-0.5(0.5)+b=>b=0.25

The equation of the normal is y=0.5x+0.25.y=-0.5x+0.25.

Point B(0,0.25)B(0,0.25)


S=00.5(0.5x+0.25(14(2x+1)2))dx=S=\displaystyle\int_{0}^{0.5}\big(-0.5x+0.25-(1-{4 \over (2x+1)^2})\big)dx=

=[0.25x20.75x22x+1]0.50==\big[-0.25x^2-0.75x-{2 \over 2x+1}\big]\begin{matrix} 0.5 \\ 0 \end{matrix}=

=0.06250.3751+0+0+2=0.5625(units2)=-0.0625-0.375-1+0+0+2=0.5625(units^2)

The area is 0.56250.5625 square units.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment