∫(x2+x+5)/((x2+4)(x+1))dx=⊗∫(x^2+x+5)/((x^2+4)(x+1)) dx=⊗∫(x2+x+5)/((x2+4)(x+1))dx=⊗
(x2+x+5)/((x2+4)(x+1))=(Ax+B)/(x2+4)+C/(x+1)(x^2+x+5)/((x^2+4)(x+1))=(Ax+B)/(x^2+4)+C/(x+1)(x2+x+5)/((x2+4)(x+1))=(Ax+B)/(x2+4)+C/(x+1) ;
(Ax+B)(x+1)+C(x2+4)=x2+x+5;(Ax+B)(x+1)+C(x^2+4)=x^2+x+5;(Ax+B)(x+1)+C(x2+4)=x2+x+5;
x2:A+C=1;x^2:A+C=1;x2:A+C=1;
x:A+B=1;x:A+B=1;x:A+B=1;
x0:B+4C=5;x^0:B+4C=5;x0:B+4C=5;
C=1−A;B=1−A;1−A+4(1−A)=5;−5A=0;C=1-A;B=1-A;1-A+4(1-A)=5;-5A=0;C=1−A;B=1−A;1−A+4(1−A)=5;−5A=0;
A=0;B=1;C=1;A=0;B=1;C=1;A=0;B=1;C=1;
⊗=∫dx/(x2+4)+∫dx/(x+1)=(1/2)arctan(x/2)+ln∣x+1∣+C.⊗=∫dx/(x^2+4)+ ∫dx/(x+1)= (1/2) arctan (x/2)+ln|x+1|+C.⊗=∫dx/(x2+4)+∫dx/(x+1)=(1/2)arctan(x/2)+ln∣x+1∣+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment