Answer to Question #110462 in Calculus for Flavia

Question #110462
Integrate x^2+X+5/(x^2+4)(X+1) dx
1
Expert's answer
2020-04-20T11:21:40-0400

(x2+x+5)/((x2+4)(x+1))dx=∫(x^2+x+5)/((x^2+4)(x+1)) dx=⊗

(x2+x+5)/((x2+4)(x+1))=(Ax+B)/(x2+4)+C/(x+1)(x^2+x+5)/((x^2+4)(x+1))=(Ax+B)/(x^2+4)+C/(x+1) ;

(Ax+B)(x+1)+C(x2+4)=x2+x+5;(Ax+B)(x+1)+C(x^2+4)=x^2+x+5;

x2:A+C=1;x^2:A+C=1;

x:A+B=1;x:A+B=1;

x0:B+4C=5;x^0:B+4C=5;

C=1A;B=1A;1A+4(1A)=5;5A=0;C=1-A;B=1-A;1-A+4(1-A)=5;-5A=0;

A=0;B=1;C=1;A=0;B=1;C=1;

=dx/(x2+4)+dx/(x+1)=(1/2)arctan(x/2)+lnx+1+C.⊗=∫dx/(x^2+4)+ ∫dx/(x+1)= (1/2) arctan (x/2)+ln⁡|x+1|+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment