a)
∫(x+3)(2x−3)2x2dx(x+3)(2x−3)2x2=x+3A+(2x−3)2B+2x−3D=
=(x+3)(2x−3)24Ax2−12Ax+9A+Bx+3B+2Dx2+3Dx−9D 4A+2D=1,−12+B+3D=0,9A+3B−9D=0
A=91,B=21,D=185
∫(x+3)(2x−3)2x2dx=91∫x+3dx+21∫(2x−3)2dx+185∫2x−3dx=
=91ln∣x+3∣+365ln∣2x−3∣−4(2x−3)1+C
b)
∫(2x+1)(x2+4)6−5xdx
(2x+1)(x2+4)6−5x=x2+4Ax+B+2x+1D=
=(2x+1)(x2+4)2Ax2+Ax+2Bx+B+Dx2+4D 2A+D=0,A+2B=−5,B+4D=6
A=−1,B=−2,D=2
∫(2x+1)(x2+4)6−5xdx=−∫x2+4xdx−∫x2+42dx+∫2x+12dx=
=ln∣2x+1∣−21ln(x2+4)−arctan(2x)+C c)
∫x2sin(2x−1)dx
∫udv=uv−∫vdu
u=x2,du=2xdxdv=sin(2x−1)dx,v=∫sin(2x−1)dx=−21cos(2x−1)
∫x2sin(2x−1)dx=−21x2cos(2x−1)+∫xcos(2x−1)
∫udv=uv−∫vdu
u=x,du=dx
dv=cos(2x−1)dx,v=∫cos(2x−1)dx=21sin(2x−1)
∫x2sin(2x−1)dx==−21x2cos(2x−1)+21sin(2x−1)−21∫sin(2x−1)dx=
=−21x2cos(2x−1)+21sin(2x−1)+41cos(2x−1)+C d)
∫sin−1(6x)dx∫udv=uv−∫vduu=sin−1(6x),du=1−36x26dxdv=dx,v=x
∫sin−1(6x)dx=xsin−1(6x)−6∫1−36x2xdx=
=xsin−1(6x)+611−36x2+C e)
∫(ex−e−x)21dx
u=e2x−1,du=2e2xdx
∫(ex−e−x)21dx=∫(e2x−1)2e2xdx=21∫u2du=
=−2u1+C=−2(e2x−1)1+C f)
∫x(x2+7)1dx=∫x3(1+x27)1dx
u=1+x27,du=−x314dx
∫x(x2+7)1dx=∫x3(1+x27)1dx=
=−141∫udu=−141ln∣u∣+C=−141ln(1+x27)+C
∫x(x2+7)1dx=−141ln(1+x27)+C
g)
∫(1−x)6(1+x)2dxu=x−1,du=dx
∫(1−x)6(1+x)2dx=∫u6(u+2)2du==∫(u8+4u7+4u6)du=91u9+21u8+74u7+C==91(x−1)9+21(x−1)8+74(x−1)7+C h)
∫x3(x2+1)1dx=∫x5(1+x21)1dx u=1+x21,du=−x32dx
∫x5(x2+1)1dx=∫x3(1+x21)1dx=
=−21∫uu−1du=−21u+21ln∣u∣+C=
=−21(1+x21)+21ln(1+x21)+C=
=−2x21+21ln(1+x21)+C
Comments