Answer to Question #110234 in Calculus for U

Question #110234
[img]https://upload.cc/i1/2020/04/16/O3K5zL.jpg[/img]



question is in picture

R=4
1
Expert's answer
2020-04-17T18:00:15-0400

a)


"\\int{x^2 \\over (x+3)(2x-3)^2}dx""{x^2 \\over (x+3)(2x-3)^2}={A \\over x+3}+{B\\over (2x-3)^2}+{D\\over 2x-3}="

"={4Ax^2-12Ax+9A+Bx+3B+2Dx^2+3Dx-9D\\over (x+3)(2x-3)^2}"

"4A+2D=1,-12+B+3D=0,9A+3B-9D=0"

"A=\\dfrac{1}{9},B=\\dfrac{1}{2}, D=\\dfrac{5}{18}"


"\\int{x^2 \\over (x+3)(2x-3)^2}dx={1 \\over 9}\\int{dx \\over x+3}+{1 \\over 2}\\int{dx \\over (2x-3)^2}+{5 \\over 18}\\int{dx \\over 2x-3}="


"={1 \\over 9}\\ln|x+3|+{5\\over 36}\\ln|2x-3|-{1 \\over 4(2x-3)}+C"

b)


"\\int{6-5x \\over (2x+1)(x^2+4)}dx"

"{6-5x \\over (2x+1)(x^2+4)}={Ax+B \\over x^2+4}+{D\\over 2x+1}="

"={2Ax^2+Ax+2Bx+B+Dx^2+4D\\over (2x+1)(x^2+4)}"

"2A+D=0, A+2B=-5,B+4D=6"

"A=-1,B=-2,D=2"


"\\int{6-5x \\over (2x+1)(x^2+4)}dx=-\\int{x\\over x^2+4}dx-\\int{2\\over x^2+4}dx+\\int{2\\over 2x+1}dx="

"=\\ln|2x+1|-{1 \\over 2}\\ln(x^2+4)-\\arctan({x \\over 2})+C"

c)


"\\int x^2\\sin(2x-1)dx"

"\\int udv=uv-\\int vdu"

"u=x^2, du=2xdx""dv=\\sin(2x-1)dx, v=\\int \\sin(2x-1)dx=-{1 \\over 2}\\cos(2x-1)"

"\\int x^2\\sin(2x-1)dx=-{1 \\over 2}x^2\\cos(2x-1)+\\int x\\cos(2x-1)"

"\\int udv=uv-\\int vdu"

"u=x, du=dx"

"dv=\\cos(2x-1)dx, v=\\int \\cos(2x-1)dx={1 \\over 2}\\sin(2x-1)"

"\\int x^2\\sin(2x-1)dx=""=-{1 \\over 2}x^2\\cos(2x-1)+{1 \\over 2}\\sin(2x-1)-{1 \\over 2}\\int \\sin(2x-1)dx="

"=-{1 \\over 2}x^2\\cos(2x-1)+{1 \\over 2}\\sin(2x-1)+{1 \\over 4}\\cos(2x-1)+C"

d)


"\\int \\sin^{-1}(6x)dx""\\int udv=uv-\\int vdu""u= \\sin^{-1}(6x), du={6 \\over \\sqrt{1-36x^2}}dx""dv=dx, v=x"

"\\int \\sin^{-1}(6x)dx=x\\sin^{-1}(6x)-6\\int {x \\over \\sqrt{1-36x^2}}dx="

"=x\\sin^{-1}(6x)+{1 \\over 6}\\sqrt{1-36x^2}+C"

e)


"\\int {1 \\over (e^x-e^{-x})^2}dx"

"u=e^{2x}-1, du=2e^{2x}dx"

"\\int {1 \\over (e^x-e^{-x})^2}dx=\\int {e^{2x} \\over (e^{2x}-1)^2}dx={1\\over 2}\\int {du \\over u^2}="


"=-{1 \\over 2u}+C=-{1 \\over 2(e^{2x}-1)}+C"

f)


"\\int{1 \\over x(x^2+7)}dx=\\int{1 \\over x^3(1+{7 \\over x^2})}dx"

"u=1+\\dfrac{7}{x^2},du=-\\dfrac{14}{x^3}dx"


"\\int{1 \\over x(x^2+7)}dx=\\int{1 \\over x^3(1+{7 \\over x^2})}dx="

"=-{1 \\over 14}\\int{du \\over u}=-{1 \\over 14}\\ln|u|+C=-{1 \\over 14}\\ln(1+{7 \\over x^2})+C"

"\\int{1 \\over x(x^2+7)}dx=-{1 \\over 14}\\ln(1+{7 \\over x^2})+C"


g)


"\\int (1-x)^6(1+x)^2dx""u=x-1, du=dx"

"\\int (1-x)^6(1+x)^2dx=\\int u^6(u+2)^2du=""=\\int(u^8+4u^7+4u^6)du={1 \\over9}u^9+{1 \\over 2}u^8+{4 \\over 7}u^7+C=""={1 \\over9}(x-1)^9+{1 \\over 2}(x-1)^8+{4 \\over 7}(x-1)^7+C"

h)

"\\int {1 \\over x^3(x^2+1)}dx=\\int{1 \\over x^5(1+{1 \\over x^2})}dx"

"u=1+\\dfrac{1}{x^2},du=-\\dfrac{2}{x^3}dx"


"\\int {1 \\over x^5(x^2+1)}dx=\\int{1 \\over x^3(1+{1 \\over x^2})}dx="

"=-{1 \\over 2}\\int{u-1 \\over u}du=-{1 \\over 2}u+{1 \\over 2}\\ln|u|+C="

"=-{1 \\over 2}(1+{1 \\over x^2})+{1 \\over 2}\\ln(1+{1 \\over x^2})+C="

"=-{1 \\over 2x^2}+{1 \\over 2}\\ln(1+{1 \\over x^2})+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS