Question #110234
[img]https://upload.cc/i1/2020/04/16/O3K5zL.jpg[/img]



question is in picture

R=4
1
Expert's answer
2020-04-17T18:00:15-0400

a)


x2(x+3)(2x3)2dx\int{x^2 \over (x+3)(2x-3)^2}dxx2(x+3)(2x3)2=Ax+3+B(2x3)2+D2x3={x^2 \over (x+3)(2x-3)^2}={A \over x+3}+{B\over (2x-3)^2}+{D\over 2x-3}=

=4Ax212Ax+9A+Bx+3B+2Dx2+3Dx9D(x+3)(2x3)2={4Ax^2-12Ax+9A+Bx+3B+2Dx^2+3Dx-9D\over (x+3)(2x-3)^2}

4A+2D=1,12+B+3D=0,9A+3B9D=04A+2D=1,-12+B+3D=0,9A+3B-9D=0

A=19,B=12,D=518A=\dfrac{1}{9},B=\dfrac{1}{2}, D=\dfrac{5}{18}


x2(x+3)(2x3)2dx=19dxx+3+12dx(2x3)2+518dx2x3=\int{x^2 \over (x+3)(2x-3)^2}dx={1 \over 9}\int{dx \over x+3}+{1 \over 2}\int{dx \over (2x-3)^2}+{5 \over 18}\int{dx \over 2x-3}=


=19lnx+3+536ln2x314(2x3)+C={1 \over 9}\ln|x+3|+{5\over 36}\ln|2x-3|-{1 \over 4(2x-3)}+C

b)


65x(2x+1)(x2+4)dx\int{6-5x \over (2x+1)(x^2+4)}dx

65x(2x+1)(x2+4)=Ax+Bx2+4+D2x+1={6-5x \over (2x+1)(x^2+4)}={Ax+B \over x^2+4}+{D\over 2x+1}=

=2Ax2+Ax+2Bx+B+Dx2+4D(2x+1)(x2+4)={2Ax^2+Ax+2Bx+B+Dx^2+4D\over (2x+1)(x^2+4)}

2A+D=0,A+2B=5,B+4D=62A+D=0, A+2B=-5,B+4D=6

A=1,B=2,D=2A=-1,B=-2,D=2


65x(2x+1)(x2+4)dx=xx2+4dx2x2+4dx+22x+1dx=\int{6-5x \over (2x+1)(x^2+4)}dx=-\int{x\over x^2+4}dx-\int{2\over x^2+4}dx+\int{2\over 2x+1}dx=

=ln2x+112ln(x2+4)arctan(x2)+C=\ln|2x+1|-{1 \over 2}\ln(x^2+4)-\arctan({x \over 2})+C

c)


x2sin(2x1)dx\int x^2\sin(2x-1)dx

udv=uvvdu\int udv=uv-\int vdu

u=x2,du=2xdxu=x^2, du=2xdxdv=sin(2x1)dx,v=sin(2x1)dx=12cos(2x1)dv=\sin(2x-1)dx, v=\int \sin(2x-1)dx=-{1 \over 2}\cos(2x-1)

x2sin(2x1)dx=12x2cos(2x1)+xcos(2x1)\int x^2\sin(2x-1)dx=-{1 \over 2}x^2\cos(2x-1)+\int x\cos(2x-1)

udv=uvvdu\int udv=uv-\int vdu

u=x,du=dxu=x, du=dx

dv=cos(2x1)dx,v=cos(2x1)dx=12sin(2x1)dv=\cos(2x-1)dx, v=\int \cos(2x-1)dx={1 \over 2}\sin(2x-1)

x2sin(2x1)dx=\int x^2\sin(2x-1)dx==12x2cos(2x1)+12sin(2x1)12sin(2x1)dx==-{1 \over 2}x^2\cos(2x-1)+{1 \over 2}\sin(2x-1)-{1 \over 2}\int \sin(2x-1)dx=

=12x2cos(2x1)+12sin(2x1)+14cos(2x1)+C=-{1 \over 2}x^2\cos(2x-1)+{1 \over 2}\sin(2x-1)+{1 \over 4}\cos(2x-1)+C

d)


sin1(6x)dx\int \sin^{-1}(6x)dxudv=uvvdu\int udv=uv-\int vduu=sin1(6x),du=6136x2dxu= \sin^{-1}(6x), du={6 \over \sqrt{1-36x^2}}dxdv=dx,v=xdv=dx, v=x

sin1(6x)dx=xsin1(6x)6x136x2dx=\int \sin^{-1}(6x)dx=x\sin^{-1}(6x)-6\int {x \over \sqrt{1-36x^2}}dx=

=xsin1(6x)+16136x2+C=x\sin^{-1}(6x)+{1 \over 6}\sqrt{1-36x^2}+C

e)


1(exex)2dx\int {1 \over (e^x-e^{-x})^2}dx

u=e2x1,du=2e2xdxu=e^{2x}-1, du=2e^{2x}dx

1(exex)2dx=e2x(e2x1)2dx=12duu2=\int {1 \over (e^x-e^{-x})^2}dx=\int {e^{2x} \over (e^{2x}-1)^2}dx={1\over 2}\int {du \over u^2}=


=12u+C=12(e2x1)+C=-{1 \over 2u}+C=-{1 \over 2(e^{2x}-1)}+C

f)


1x(x2+7)dx=1x3(1+7x2)dx\int{1 \over x(x^2+7)}dx=\int{1 \over x^3(1+{7 \over x^2})}dx

u=1+7x2,du=14x3dxu=1+\dfrac{7}{x^2},du=-\dfrac{14}{x^3}dx


1x(x2+7)dx=1x3(1+7x2)dx=\int{1 \over x(x^2+7)}dx=\int{1 \over x^3(1+{7 \over x^2})}dx=

=114duu=114lnu+C=114ln(1+7x2)+C=-{1 \over 14}\int{du \over u}=-{1 \over 14}\ln|u|+C=-{1 \over 14}\ln(1+{7 \over x^2})+C

1x(x2+7)dx=114ln(1+7x2)+C\int{1 \over x(x^2+7)}dx=-{1 \over 14}\ln(1+{7 \over x^2})+C


g)


(1x)6(1+x)2dx\int (1-x)^6(1+x)^2dxu=x1,du=dxu=x-1, du=dx

(1x)6(1+x)2dx=u6(u+2)2du=\int (1-x)^6(1+x)^2dx=\int u^6(u+2)^2du==(u8+4u7+4u6)du=19u9+12u8+47u7+C==\int(u^8+4u^7+4u^6)du={1 \over9}u^9+{1 \over 2}u^8+{4 \over 7}u^7+C==19(x1)9+12(x1)8+47(x1)7+C={1 \over9}(x-1)^9+{1 \over 2}(x-1)^8+{4 \over 7}(x-1)^7+C

h)

1x3(x2+1)dx=1x5(1+1x2)dx\int {1 \over x^3(x^2+1)}dx=\int{1 \over x^5(1+{1 \over x^2})}dx

u=1+1x2,du=2x3dxu=1+\dfrac{1}{x^2},du=-\dfrac{2}{x^3}dx


1x5(x2+1)dx=1x3(1+1x2)dx=\int {1 \over x^5(x^2+1)}dx=\int{1 \over x^3(1+{1 \over x^2})}dx=

=12u1udu=12u+12lnu+C==-{1 \over 2}\int{u-1 \over u}du=-{1 \over 2}u+{1 \over 2}\ln|u|+C=

=12(1+1x2)+12ln(1+1x2)+C==-{1 \over 2}(1+{1 \over x^2})+{1 \over 2}\ln(1+{1 \over x^2})+C=

=12x2+12ln(1+1x2)+C=-{1 \over 2x^2}+{1 \over 2}\ln(1+{1 \over x^2})+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS