a)
∫ x 2 ( x + 3 ) ( 2 x − 3 ) 2 d x \int{x^2 \over (x+3)(2x-3)^2}dx ∫ ( x + 3 ) ( 2 x − 3 ) 2 x 2 d x x 2 ( x + 3 ) ( 2 x − 3 ) 2 = A x + 3 + B ( 2 x − 3 ) 2 + D 2 x − 3 = {x^2 \over (x+3)(2x-3)^2}={A \over x+3}+{B\over (2x-3)^2}+{D\over 2x-3}= ( x + 3 ) ( 2 x − 3 ) 2 x 2 = x + 3 A + ( 2 x − 3 ) 2 B + 2 x − 3 D =
= 4 A x 2 − 12 A x + 9 A + B x + 3 B + 2 D x 2 + 3 D x − 9 D ( x + 3 ) ( 2 x − 3 ) 2 ={4Ax^2-12Ax+9A+Bx+3B+2Dx^2+3Dx-9D\over (x+3)(2x-3)^2} = ( x + 3 ) ( 2 x − 3 ) 2 4 A x 2 − 12 A x + 9 A + B x + 3 B + 2 D x 2 + 3 D x − 9 D 4 A + 2 D = 1 , − 12 + B + 3 D = 0 , 9 A + 3 B − 9 D = 0 4A+2D=1,-12+B+3D=0,9A+3B-9D=0 4 A + 2 D = 1 , − 12 + B + 3 D = 0 , 9 A + 3 B − 9 D = 0
A = 1 9 , B = 1 2 , D = 5 18 A=\dfrac{1}{9},B=\dfrac{1}{2}, D=\dfrac{5}{18} A = 9 1 , B = 2 1 , D = 18 5
∫ x 2 ( x + 3 ) ( 2 x − 3 ) 2 d x = 1 9 ∫ d x x + 3 + 1 2 ∫ d x ( 2 x − 3 ) 2 + 5 18 ∫ d x 2 x − 3 = \int{x^2 \over (x+3)(2x-3)^2}dx={1 \over 9}\int{dx \over x+3}+{1 \over 2}\int{dx \over (2x-3)^2}+{5 \over 18}\int{dx \over 2x-3}= ∫ ( x + 3 ) ( 2 x − 3 ) 2 x 2 d x = 9 1 ∫ x + 3 d x + 2 1 ∫ ( 2 x − 3 ) 2 d x + 18 5 ∫ 2 x − 3 d x =
= 1 9 ln ∣ x + 3 ∣ + 5 36 ln ∣ 2 x − 3 ∣ − 1 4 ( 2 x − 3 ) + C ={1 \over 9}\ln|x+3|+{5\over 36}\ln|2x-3|-{1 \over 4(2x-3)}+C = 9 1 ln ∣ x + 3∣ + 36 5 ln ∣2 x − 3∣ − 4 ( 2 x − 3 ) 1 + C
b)
∫ 6 − 5 x ( 2 x + 1 ) ( x 2 + 4 ) d x \int{6-5x \over (2x+1)(x^2+4)}dx ∫ ( 2 x + 1 ) ( x 2 + 4 ) 6 − 5 x d x
6 − 5 x ( 2 x + 1 ) ( x 2 + 4 ) = A x + B x 2 + 4 + D 2 x + 1 = {6-5x \over (2x+1)(x^2+4)}={Ax+B \over x^2+4}+{D\over 2x+1}= ( 2 x + 1 ) ( x 2 + 4 ) 6 − 5 x = x 2 + 4 A x + B + 2 x + 1 D =
= 2 A x 2 + A x + 2 B x + B + D x 2 + 4 D ( 2 x + 1 ) ( x 2 + 4 ) ={2Ax^2+Ax+2Bx+B+Dx^2+4D\over (2x+1)(x^2+4)} = ( 2 x + 1 ) ( x 2 + 4 ) 2 A x 2 + A x + 2 B x + B + D x 2 + 4 D 2 A + D = 0 , A + 2 B = − 5 , B + 4 D = 6 2A+D=0, A+2B=-5,B+4D=6 2 A + D = 0 , A + 2 B = − 5 , B + 4 D = 6
A = − 1 , B = − 2 , D = 2 A=-1,B=-2,D=2 A = − 1 , B = − 2 , D = 2
∫ 6 − 5 x ( 2 x + 1 ) ( x 2 + 4 ) d x = − ∫ x x 2 + 4 d x − ∫ 2 x 2 + 4 d x + ∫ 2 2 x + 1 d x = \int{6-5x \over (2x+1)(x^2+4)}dx=-\int{x\over x^2+4}dx-\int{2\over x^2+4}dx+\int{2\over 2x+1}dx= ∫ ( 2 x + 1 ) ( x 2 + 4 ) 6 − 5 x d x = − ∫ x 2 + 4 x d x − ∫ x 2 + 4 2 d x + ∫ 2 x + 1 2 d x =
= ln ∣ 2 x + 1 ∣ − 1 2 ln ( x 2 + 4 ) − arctan ( x 2 ) + C =\ln|2x+1|-{1 \over 2}\ln(x^2+4)-\arctan({x \over 2})+C = ln ∣2 x + 1∣ − 2 1 ln ( x 2 + 4 ) − arctan ( 2 x ) + C c)
∫ x 2 sin ( 2 x − 1 ) d x \int x^2\sin(2x-1)dx ∫ x 2 sin ( 2 x − 1 ) d x
∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu ∫ u d v = uv − ∫ v d u
u = x 2 , d u = 2 x d x u=x^2, du=2xdx u = x 2 , d u = 2 x d x d v = sin ( 2 x − 1 ) d x , v = ∫ sin ( 2 x − 1 ) d x = − 1 2 cos ( 2 x − 1 ) dv=\sin(2x-1)dx, v=\int \sin(2x-1)dx=-{1 \over 2}\cos(2x-1) d v = sin ( 2 x − 1 ) d x , v = ∫ sin ( 2 x − 1 ) d x = − 2 1 cos ( 2 x − 1 )
∫ x 2 sin ( 2 x − 1 ) d x = − 1 2 x 2 cos ( 2 x − 1 ) + ∫ x cos ( 2 x − 1 ) \int x^2\sin(2x-1)dx=-{1 \over 2}x^2\cos(2x-1)+\int x\cos(2x-1) ∫ x 2 sin ( 2 x − 1 ) d x = − 2 1 x 2 cos ( 2 x − 1 ) + ∫ x cos ( 2 x − 1 )
∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu ∫ u d v = uv − ∫ v d u
u = x , d u = d x u=x, du=dx u = x , d u = d x
d v = cos ( 2 x − 1 ) d x , v = ∫ cos ( 2 x − 1 ) d x = 1 2 sin ( 2 x − 1 ) dv=\cos(2x-1)dx, v=\int \cos(2x-1)dx={1 \over 2}\sin(2x-1) d v = cos ( 2 x − 1 ) d x , v = ∫ cos ( 2 x − 1 ) d x = 2 1 sin ( 2 x − 1 )
∫ x 2 sin ( 2 x − 1 ) d x = \int x^2\sin(2x-1)dx= ∫ x 2 sin ( 2 x − 1 ) d x = = − 1 2 x 2 cos ( 2 x − 1 ) + 1 2 sin ( 2 x − 1 ) − 1 2 ∫ sin ( 2 x − 1 ) d x = =-{1 \over 2}x^2\cos(2x-1)+{1 \over 2}\sin(2x-1)-{1 \over 2}\int \sin(2x-1)dx= = − 2 1 x 2 cos ( 2 x − 1 ) + 2 1 sin ( 2 x − 1 ) − 2 1 ∫ sin ( 2 x − 1 ) d x =
= − 1 2 x 2 cos ( 2 x − 1 ) + 1 2 sin ( 2 x − 1 ) + 1 4 cos ( 2 x − 1 ) + C =-{1 \over 2}x^2\cos(2x-1)+{1 \over 2}\sin(2x-1)+{1 \over 4}\cos(2x-1)+C = − 2 1 x 2 cos ( 2 x − 1 ) + 2 1 sin ( 2 x − 1 ) + 4 1 cos ( 2 x − 1 ) + C d)
∫ sin − 1 ( 6 x ) d x \int \sin^{-1}(6x)dx ∫ sin − 1 ( 6 x ) d x ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu ∫ u d v = uv − ∫ v d u u = sin − 1 ( 6 x ) , d u = 6 1 − 36 x 2 d x u= \sin^{-1}(6x), du={6 \over \sqrt{1-36x^2}}dx u = sin − 1 ( 6 x ) , d u = 1 − 36 x 2 6 d x d v = d x , v = x dv=dx, v=x d v = d x , v = x
∫ sin − 1 ( 6 x ) d x = x sin − 1 ( 6 x ) − 6 ∫ x 1 − 36 x 2 d x = \int \sin^{-1}(6x)dx=x\sin^{-1}(6x)-6\int {x \over \sqrt{1-36x^2}}dx= ∫ sin − 1 ( 6 x ) d x = x sin − 1 ( 6 x ) − 6 ∫ 1 − 36 x 2 x d x =
= x sin − 1 ( 6 x ) + 1 6 1 − 36 x 2 + C =x\sin^{-1}(6x)+{1 \over 6}\sqrt{1-36x^2}+C = x sin − 1 ( 6 x ) + 6 1 1 − 36 x 2 + C e)
∫ 1 ( e x − e − x ) 2 d x \int {1 \over (e^x-e^{-x})^2}dx ∫ ( e x − e − x ) 2 1 d x
u = e 2 x − 1 , d u = 2 e 2 x d x u=e^{2x}-1, du=2e^{2x}dx u = e 2 x − 1 , d u = 2 e 2 x d x
∫ 1 ( e x − e − x ) 2 d x = ∫ e 2 x ( e 2 x − 1 ) 2 d x = 1 2 ∫ d u u 2 = \int {1 \over (e^x-e^{-x})^2}dx=\int {e^{2x} \over (e^{2x}-1)^2}dx={1\over 2}\int {du \over u^2}= ∫ ( e x − e − x ) 2 1 d x = ∫ ( e 2 x − 1 ) 2 e 2 x d x = 2 1 ∫ u 2 d u =
= − 1 2 u + C = − 1 2 ( e 2 x − 1 ) + C =-{1 \over 2u}+C=-{1 \over 2(e^{2x}-1)}+C = − 2 u 1 + C = − 2 ( e 2 x − 1 ) 1 + C f)
∫ 1 x ( x 2 + 7 ) d x = ∫ 1 x 3 ( 1 + 7 x 2 ) d x \int{1 \over x(x^2+7)}dx=\int{1 \over x^3(1+{7 \over x^2})}dx ∫ x ( x 2 + 7 ) 1 d x = ∫ x 3 ( 1 + x 2 7 ) 1 d x
u = 1 + 7 x 2 , d u = − 14 x 3 d x u=1+\dfrac{7}{x^2},du=-\dfrac{14}{x^3}dx u = 1 + x 2 7 , d u = − x 3 14 d x
∫ 1 x ( x 2 + 7 ) d x = ∫ 1 x 3 ( 1 + 7 x 2 ) d x = \int{1 \over x(x^2+7)}dx=\int{1 \over x^3(1+{7 \over x^2})}dx= ∫ x ( x 2 + 7 ) 1 d x = ∫ x 3 ( 1 + x 2 7 ) 1 d x =
= − 1 14 ∫ d u u = − 1 14 ln ∣ u ∣ + C = − 1 14 ln ( 1 + 7 x 2 ) + C =-{1 \over 14}\int{du \over u}=-{1 \over 14}\ln|u|+C=-{1 \over 14}\ln(1+{7 \over x^2})+C = − 14 1 ∫ u d u = − 14 1 ln ∣ u ∣ + C = − 14 1 ln ( 1 + x 2 7 ) + C
∫ 1 x ( x 2 + 7 ) d x = − 1 14 ln ( 1 + 7 x 2 ) + C \int{1 \over x(x^2+7)}dx=-{1 \over 14}\ln(1+{7 \over x^2})+C ∫ x ( x 2 + 7 ) 1 d x = − 14 1 ln ( 1 + x 2 7 ) + C
g)
∫ ( 1 − x ) 6 ( 1 + x ) 2 d x \int (1-x)^6(1+x)^2dx ∫ ( 1 − x ) 6 ( 1 + x ) 2 d x u = x − 1 , d u = d x u=x-1, du=dx u = x − 1 , d u = d x
∫ ( 1 − x ) 6 ( 1 + x ) 2 d x = ∫ u 6 ( u + 2 ) 2 d u = \int (1-x)^6(1+x)^2dx=\int u^6(u+2)^2du= ∫ ( 1 − x ) 6 ( 1 + x ) 2 d x = ∫ u 6 ( u + 2 ) 2 d u = = ∫ ( u 8 + 4 u 7 + 4 u 6 ) d u = 1 9 u 9 + 1 2 u 8 + 4 7 u 7 + C = =\int(u^8+4u^7+4u^6)du={1 \over9}u^9+{1 \over 2}u^8+{4 \over 7}u^7+C= = ∫ ( u 8 + 4 u 7 + 4 u 6 ) d u = 9 1 u 9 + 2 1 u 8 + 7 4 u 7 + C = = 1 9 ( x − 1 ) 9 + 1 2 ( x − 1 ) 8 + 4 7 ( x − 1 ) 7 + C ={1 \over9}(x-1)^9+{1 \over 2}(x-1)^8+{4 \over 7}(x-1)^7+C = 9 1 ( x − 1 ) 9 + 2 1 ( x − 1 ) 8 + 7 4 ( x − 1 ) 7 + C h)
∫ 1 x 3 ( x 2 + 1 ) d x = ∫ 1 x 5 ( 1 + 1 x 2 ) d x \int {1 \over x^3(x^2+1)}dx=\int{1 \over x^5(1+{1 \over x^2})}dx ∫ x 3 ( x 2 + 1 ) 1 d x = ∫ x 5 ( 1 + x 2 1 ) 1 d x u = 1 + 1 x 2 , d u = − 2 x 3 d x u=1+\dfrac{1}{x^2},du=-\dfrac{2}{x^3}dx u = 1 + x 2 1 , d u = − x 3 2 d x
∫ 1 x 5 ( x 2 + 1 ) d x = ∫ 1 x 3 ( 1 + 1 x 2 ) d x = \int {1 \over x^5(x^2+1)}dx=\int{1 \over x^3(1+{1 \over x^2})}dx= ∫ x 5 ( x 2 + 1 ) 1 d x = ∫ x 3 ( 1 + x 2 1 ) 1 d x =
= − 1 2 ∫ u − 1 u d u = − 1 2 u + 1 2 ln ∣ u ∣ + C = =-{1 \over 2}\int{u-1 \over u}du=-{1 \over 2}u+{1 \over 2}\ln|u|+C= = − 2 1 ∫ u u − 1 d u = − 2 1 u + 2 1 ln ∣ u ∣ + C =
= − 1 2 ( 1 + 1 x 2 ) + 1 2 ln ( 1 + 1 x 2 ) + C = =-{1 \over 2}(1+{1 \over x^2})+{1 \over 2}\ln(1+{1 \over x^2})+C= = − 2 1 ( 1 + x 2 1 ) + 2 1 ln ( 1 + x 2 1 ) + C =
= − 1 2 x 2 + 1 2 ln ( 1 + 1 x 2 ) + C =-{1 \over 2x^2}+{1 \over 2}\ln(1+{1 \over x^2})+C = − 2 x 2 1 + 2 1 ln ( 1 + x 2 1 ) + C
Comments