Given f (x2) =x2sinx², compute the derivative of f with respect to x.
As f(x2)=x2sinx2f(x^2)=x^2sinx^2f(x2)=x2sinx2
d(f(x2))dx=d(x2sinx2)dx\frac{d(f(x^2))}{dx}=\frac{d(x^2sinx^2)}{dx}dxd(f(x2))=dxd(x2sinx2)
2xf′(x2)=2xsinx2+2x3cosx22xf'(x^2)=2xsinx^2+2x^3cosx^22xf′(x2)=2xsinx2+2x3cosx2
Hence, f′(x2)=sinx2+x2cosx2f'(x^2)=sinx^2+x^2cosx^2f′(x2)=sinx2+x2cosx2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments