Answer to Question #110233 in Calculus for lolipop

Question #110233
[img]https://upload.cc/i1/2020/04/16/pcQUg6.jpg[/img]


question in photo
R=4
1
Expert's answer
2020-04-20T04:47:19-0400

a) f(x)=(R+1)3x31+e2tdtf(x)=\int _{(R+1)^3} ^{x^3} \sqrt {1+e^{2t}} dt

i) Using Newton-Leibnitz's rule; we get;

f(x)=3x21+e2(x3)0f'(x)=3x^2\sqrt { 1+e^{2(x^3)}}- 0

    f(x)=3x21+e2x3\implies f'(x)=3x^2\sqrt { 1+e^{2x^3}} ----(1) ---(Answer)


ii) Given : g(x)=sin(f(x))    g(x)=cos(f(x))f(x)g(x)=sin(f(x)) \implies g'(x)=cos(f(x))*f'(x) ---(2)

    g(R+1)=cos(f(R+1))f(R+1)\implies g'(R+1)=cos(f(R+1))*f'(R+1)

Now, f(R+1)=(R+1)3(R+1)31+e2tdt=0f(R+1)=\int _{(R+1)^3} ^{(R+1)^3} \sqrt {1+e^{2t}} dt=0 ---(3)

(1)    f(R+1)=3(R+1)21+e2(R+1)3(1) \implies f'(R+1)=3(R+1)^2\sqrt { 1+e^{2(R+1)^3}} ---(4)

Using (3) and (4) in (2), we get;

g(R+1)=cos(0)f(R+1)=f(R+1)g'(R+1)=cos(0)*f'(R+1)=f'(R+1)

    g(R+1)=3(R+1)21+e2(R+1)3\implies g'(R+1)=3(R+1)^2\sqrt { 1+e^{2(R+1)^3}}

Also given; R=4 \implies    g(5)=3(5)21+e2(5)3=3751+e250\implies g'(5)=3(5)^2\sqrt { 1+e^{2(5)^3}}=375\sqrt { 1+e^{250}}

=7.251056=7.25*10^{56}


b) Given : n is a positive integer.

i) Let In=0π/4tannx.dxI_n=\int _0 ^{\pi /4}tan^nx.dx

Then, In+1=0π/4tann+1x.dxI_{n+1}=\int _0 ^{\pi /4}tan^{n+1}x.dx

=0π/4tanxtannxdx=\int _0 ^{\pi /4}tanx*tan^nxdx

=[tanx]0π/40π/4tannxdx0π/4sec2x(0π/4tannxdx)dx=[tanx]_0 ^{\pi /4}*\int _0 ^{\pi /4}tan^nxdx-\int _0 ^{\pi /4}sec^2x*(\int _0 ^{\pi /4}tan^nxdx)dx

=(10)In0π/4sec2xIndx=(1-0)I_n-\int _0 ^{\pi /4}sec^2x*I_ndx


    In+1=In0π/4sec2xIndx\implies I_{n+1}=I_n-\int _0 ^{\pi /4}sec^2x*I_ndx ---(1)

As n is a positive integer and tanxtanx is positive in the interval (0,π/4)    In>0(0,\pi /4) \implies I_n>0

Also, sec2x>0    0π/4sec2xIndx>0sec^2x >0 \implies \int _0 ^{\pi /4}sec^2x*I_ndx >0 ---(2)

Thus, (1);(2)    In+1<In(1);(2) \implies I_{n+1}<I_n


ii) For this, we use the definition that Integration of a function is area under the curve of that function.

Let f(x)=xn;g(x)=xn/(1+x3)f(x)=x^n; g(x)=x^n/(1+x^3)

Given : 0<x<1    1+x3>1    1/(1+x3)<10<x<1 \implies 1+x^3>1 \implies 1/(1+x^3)<1

    xn/(1+x3)<xn\implies x^n/(1+x^3)<x^n

    f(x)>g(x);x(0,1)\implies f(x)>g(x); \forall x \in (0,1)

Using the above information we sketch approximate graphs of the two functions:




Clearly, 01f(x)dx>01g(x)dx;x(0,1)\int _0 ^1f(x)dx>\int _0 ^1g(x)dx; \forall x \in (0,1) (as area under g(x) is smaller)

    01xn/(1+x3)dx<01xndx\implies \int _0 ^1x^n/(1+x^3)dx<\int _0 ^1x^n dx -----(Answer)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment