a) f(x)=∫(R+1)3x31+e2tdt 
i) Using Newton-Leibnitz's rule; we get;
f′(x)=3x21+e2(x3)−0 
⟹f′(x)=3x21+e2x3            ----(1)          ---(Answer) 
ii) Given : g(x)=sin(f(x))⟹g′(x)=cos(f(x))∗f′(x)     ---(2)
⟹g′(R+1)=cos(f(R+1))∗f′(R+1) 
 Now, f(R+1)=∫(R+1)3(R+1)31+e2tdt=0       ---(3)
(1)⟹f′(R+1)=3(R+1)21+e2(R+1)3     ---(4)
Using (3) and (4) in (2), we get;
 g′(R+1)=cos(0)∗f′(R+1)=f′(R+1) 
⟹g′(R+1)=3(R+1)21+e2(R+1)3       
Also given; R=4 \implies⟹g′(5)=3(5)21+e2(5)3=3751+e250  
																	=7.25∗1056 
b) Given : n is a positive integer.
i) Let In=∫0π/4tannx.dx 
Then, In+1=∫0π/4tann+1x.dx 
						=∫0π/4tanx∗tannxdx 
						=[tanx]0π/4∗∫0π/4tannxdx−∫0π/4sec2x∗(∫0π/4tannxdx)dx 
						=(1−0)In−∫0π/4sec2x∗Indx 
⟹In+1=In−∫0π/4sec2x∗Indx      ---(1)
As n is a positive integer and tanx  is positive in the interval (0,π/4)⟹In>0 
Also, sec2x>0⟹∫0π/4sec2x∗Indx>0      ---(2)
 
Thus, (1);(2)⟹In+1<In 
ii) For this, we use the definition that Integration of a function is area under the curve of that function.
Let f(x)=xn;g(x)=xn/(1+x3) 
Given : 0<x<1⟹1+x3>1⟹1/(1+x3)<1 
⟹xn/(1+x3)<xn 
⟹f(x)>g(x);∀x∈(0,1) 
Using the above information we sketch approximate graphs of the two functions: 
Clearly, ∫01f(x)dx>∫01g(x)dx;∀x∈(0,1)      (as area under g(x) is smaller)
 ⟹∫01xn/(1+x3)dx<∫01xndx    -----(Answer)
                             
Comments