a) f ( x ) = ∫ ( R + 1 ) 3 x 3 1 + e 2 t d t f(x)=\int _{(R+1)^3} ^{x^3} \sqrt {1+e^{2t}} dt f ( x ) = ∫ ( R + 1 ) 3 x 3 1 + e 2 t d t
i) Using Newton-Leibnitz's rule; we get;
f ′ ( x ) = 3 x 2 1 + e 2 ( x 3 ) − 0 f'(x)=3x^2\sqrt { 1+e^{2(x^3)}}- 0 f ′ ( x ) = 3 x 2 1 + e 2 ( x 3 ) − 0
⟹ f ′ ( x ) = 3 x 2 1 + e 2 x 3 \implies f'(x)=3x^2\sqrt { 1+e^{2x^3}} ⟹ f ′ ( x ) = 3 x 2 1 + e 2 x 3 ----(1) ---(Answer)
ii) Given : g ( x ) = s i n ( f ( x ) ) ⟹ g ′ ( x ) = c o s ( f ( x ) ) ∗ f ′ ( x ) g(x)=sin(f(x)) \implies g'(x)=cos(f(x))*f'(x) g ( x ) = s in ( f ( x )) ⟹ g ′ ( x ) = cos ( f ( x )) ∗ f ′ ( x ) ---(2)
⟹ g ′ ( R + 1 ) = c o s ( f ( R + 1 ) ) ∗ f ′ ( R + 1 ) \implies g'(R+1)=cos(f(R+1))*f'(R+1) ⟹ g ′ ( R + 1 ) = cos ( f ( R + 1 )) ∗ f ′ ( R + 1 )
Now, f ( R + 1 ) = ∫ ( R + 1 ) 3 ( R + 1 ) 3 1 + e 2 t d t = 0 f(R+1)=\int _{(R+1)^3} ^{(R+1)^3} \sqrt {1+e^{2t}} dt=0 f ( R + 1 ) = ∫ ( R + 1 ) 3 ( R + 1 ) 3 1 + e 2 t d t = 0 ---(3)
( 1 ) ⟹ f ′ ( R + 1 ) = 3 ( R + 1 ) 2 1 + e 2 ( R + 1 ) 3 (1) \implies f'(R+1)=3(R+1)^2\sqrt { 1+e^{2(R+1)^3}} ( 1 ) ⟹ f ′ ( R + 1 ) = 3 ( R + 1 ) 2 1 + e 2 ( R + 1 ) 3 ---(4)
Using (3) and (4) in (2), we get;
g ′ ( R + 1 ) = c o s ( 0 ) ∗ f ′ ( R + 1 ) = f ′ ( R + 1 ) g'(R+1)=cos(0)*f'(R+1)=f'(R+1) g ′ ( R + 1 ) = cos ( 0 ) ∗ f ′ ( R + 1 ) = f ′ ( R + 1 )
⟹ g ′ ( R + 1 ) = 3 ( R + 1 ) 2 1 + e 2 ( R + 1 ) 3 \implies g'(R+1)=3(R+1)^2\sqrt { 1+e^{2(R+1)^3}} ⟹ g ′ ( R + 1 ) = 3 ( R + 1 ) 2 1 + e 2 ( R + 1 ) 3
Also given; R=4 \implies ⟹ g ′ ( 5 ) = 3 ( 5 ) 2 1 + e 2 ( 5 ) 3 = 375 1 + e 250 \implies g'(5)=3(5)^2\sqrt { 1+e^{2(5)^3}}=375\sqrt { 1+e^{250}} ⟹ g ′ ( 5 ) = 3 ( 5 ) 2 1 + e 2 ( 5 ) 3 = 375 1 + e 250
= 7.25 ∗ 1 0 56 =7.25*10^{56} = 7.25 ∗ 1 0 56
b) Given : n is a positive integer.
i) Let I n = ∫ 0 π / 4 t a n n x . d x I_n=\int _0 ^{\pi /4}tan^nx.dx I n = ∫ 0 π /4 t a n n x . d x
Then, I n + 1 = ∫ 0 π / 4 t a n n + 1 x . d x I_{n+1}=\int _0 ^{\pi /4}tan^{n+1}x.dx I n + 1 = ∫ 0 π /4 t a n n + 1 x . d x
= ∫ 0 π / 4 t a n x ∗ t a n n x d x =\int _0 ^{\pi /4}tanx*tan^nxdx = ∫ 0 π /4 t an x ∗ t a n n x d x
= [ t a n x ] 0 π / 4 ∗ ∫ 0 π / 4 t a n n x d x − ∫ 0 π / 4 s e c 2 x ∗ ( ∫ 0 π / 4 t a n n x d x ) d x =[tanx]_0 ^{\pi /4}*\int _0 ^{\pi /4}tan^nxdx-\int _0 ^{\pi /4}sec^2x*(\int _0 ^{\pi /4}tan^nxdx)dx = [ t an x ] 0 π /4 ∗ ∫ 0 π /4 t a n n x d x − ∫ 0 π /4 se c 2 x ∗ ( ∫ 0 π /4 t a n n x d x ) d x
= ( 1 − 0 ) I n − ∫ 0 π / 4 s e c 2 x ∗ I n d x =(1-0)I_n-\int _0 ^{\pi /4}sec^2x*I_ndx = ( 1 − 0 ) I n − ∫ 0 π /4 se c 2 x ∗ I n d x
⟹ I n + 1 = I n − ∫ 0 π / 4 s e c 2 x ∗ I n d x \implies I_{n+1}=I_n-\int _0 ^{\pi /4}sec^2x*I_ndx ⟹ I n + 1 = I n − ∫ 0 π /4 se c 2 x ∗ I n d x ---(1)
As n is a positive integer and t a n x tanx t an x is positive in the interval ( 0 , π / 4 ) ⟹ I n > 0 (0,\pi /4) \implies I_n>0 ( 0 , π /4 ) ⟹ I n > 0
Also, s e c 2 x > 0 ⟹ ∫ 0 π / 4 s e c 2 x ∗ I n d x > 0 sec^2x >0 \implies \int _0 ^{\pi /4}sec^2x*I_ndx >0 se c 2 x > 0 ⟹ ∫ 0 π /4 se c 2 x ∗ I n d x > 0 ---(2)
Thus, ( 1 ) ; ( 2 ) ⟹ I n + 1 < I n (1);(2) \implies I_{n+1}<I_n ( 1 ) ; ( 2 ) ⟹ I n + 1 < I n
ii) For this, we use the definition that Integration of a function is area under the curve of that function.
Let f ( x ) = x n ; g ( x ) = x n / ( 1 + x 3 ) f(x)=x^n; g(x)=x^n/(1+x^3) f ( x ) = x n ; g ( x ) = x n / ( 1 + x 3 )
Given : 0 < x < 1 ⟹ 1 + x 3 > 1 ⟹ 1 / ( 1 + x 3 ) < 1 0<x<1 \implies 1+x^3>1 \implies 1/(1+x^3)<1 0 < x < 1 ⟹ 1 + x 3 > 1 ⟹ 1/ ( 1 + x 3 ) < 1
⟹ x n / ( 1 + x 3 ) < x n \implies x^n/(1+x^3)<x^n ⟹ x n / ( 1 + x 3 ) < x n
⟹ f ( x ) > g ( x ) ; ∀ x ∈ ( 0 , 1 ) \implies f(x)>g(x); \forall x \in (0,1) ⟹ f ( x ) > g ( x ) ; ∀ x ∈ ( 0 , 1 )
Using the above information we sketch approximate graphs of the two functions:
Clearly, ∫ 0 1 f ( x ) d x > ∫ 0 1 g ( x ) d x ; ∀ x ∈ ( 0 , 1 ) \int _0 ^1f(x)dx>\int _0 ^1g(x)dx; \forall x \in (0,1) ∫ 0 1 f ( x ) d x > ∫ 0 1 g ( x ) d x ; ∀ x ∈ ( 0 , 1 ) (as area under g(x) is smaller)
⟹ ∫ 0 1 x n / ( 1 + x 3 ) d x < ∫ 0 1 x n d x \implies \int _0 ^1x^n/(1+x^3)dx<\int _0 ^1x^n dx ⟹ ∫ 0 1 x n / ( 1 + x 3 ) d x < ∫ 0 1 x n d x -----(Answer)
Comments