a) f(x)=∫(R+1)3x31+e2tdt
i) Using Newton-Leibnitz's rule; we get;
f′(x)=3x21+e2(x3)−0
⟹f′(x)=3x21+e2x3 ----(1) ---(Answer)
ii) Given : g(x)=sin(f(x))⟹g′(x)=cos(f(x))∗f′(x) ---(2)
⟹g′(R+1)=cos(f(R+1))∗f′(R+1)
Now, f(R+1)=∫(R+1)3(R+1)31+e2tdt=0 ---(3)
(1)⟹f′(R+1)=3(R+1)21+e2(R+1)3 ---(4)
Using (3) and (4) in (2), we get;
g′(R+1)=cos(0)∗f′(R+1)=f′(R+1)
⟹g′(R+1)=3(R+1)21+e2(R+1)3
Also given; R=4 \implies⟹g′(5)=3(5)21+e2(5)3=3751+e250
=7.25∗1056
b) Given : n is a positive integer.
i) Let In=∫0π/4tannx.dx
Then, In+1=∫0π/4tann+1x.dx
=∫0π/4tanx∗tannxdx
=[tanx]0π/4∗∫0π/4tannxdx−∫0π/4sec2x∗(∫0π/4tannxdx)dx
=(1−0)In−∫0π/4sec2x∗Indx
⟹In+1=In−∫0π/4sec2x∗Indx ---(1)
As n is a positive integer and tanx is positive in the interval (0,π/4)⟹In>0
Also, sec2x>0⟹∫0π/4sec2x∗Indx>0 ---(2)
Thus, (1);(2)⟹In+1<In
ii) For this, we use the definition that Integration of a function is area under the curve of that function.
Let f(x)=xn;g(x)=xn/(1+x3)
Given : 0<x<1⟹1+x3>1⟹1/(1+x3)<1
⟹xn/(1+x3)<xn
⟹f(x)>g(x);∀x∈(0,1)
Using the above information we sketch approximate graphs of the two functions:
Clearly, ∫01f(x)dx>∫01g(x)dx;∀x∈(0,1) (as area under g(x) is smaller)
⟹∫01xn/(1+x3)dx<∫01xndx -----(Answer)
Comments
Leave a comment