a) "f(x)=\\int _{(R+1)^3} ^{x^3} \\sqrt {1+e^{2t}} dt"
i) Using Newton-Leibnitz's rule; we get;
"f'(x)=3x^2\\sqrt { 1+e^{2(x^3)}}- 0"
"\\implies f'(x)=3x^2\\sqrt { 1+e^{2x^3}}" ----(1) ---(Answer)
ii) Given : "g(x)=sin(f(x)) \\implies g'(x)=cos(f(x))*f'(x)" ---(2)
"\\implies g'(R+1)=cos(f(R+1))*f'(R+1)"
Now, "f(R+1)=\\int _{(R+1)^3} ^{(R+1)^3} \\sqrt {1+e^{2t}} dt=0" ---(3)
"(1) \\implies f'(R+1)=3(R+1)^2\\sqrt { 1+e^{2(R+1)^3}}" ---(4)
Using (3) and (4) in (2), we get;
"g'(R+1)=cos(0)*f'(R+1)=f'(R+1)"
"\\implies g'(R+1)=3(R+1)^2\\sqrt { 1+e^{2(R+1)^3}}"
Also given; R=4 \implies"\\implies g'(5)=3(5)^2\\sqrt { 1+e^{2(5)^3}}=375\\sqrt { 1+e^{250}}"
"=7.25*10^{56}"
b) Given : n is a positive integer.
i) Let "I_n=\\int _0 ^{\\pi \/4}tan^nx.dx"
Then, "I_{n+1}=\\int _0 ^{\\pi \/4}tan^{n+1}x.dx"
"=\\int _0 ^{\\pi \/4}tanx*tan^nxdx"
"=[tanx]_0 ^{\\pi \/4}*\\int _0 ^{\\pi \/4}tan^nxdx-\\int _0 ^{\\pi \/4}sec^2x*(\\int _0 ^{\\pi \/4}tan^nxdx)dx"
"=(1-0)I_n-\\int _0 ^{\\pi \/4}sec^2x*I_ndx"
"\\implies I_{n+1}=I_n-\\int _0 ^{\\pi \/4}sec^2x*I_ndx" ---(1)
As n is a positive integer and "tanx" is positive in the interval "(0,\\pi \/4) \\implies I_n>0"
Also, "sec^2x >0 \\implies \\int _0 ^{\\pi \/4}sec^2x*I_ndx >0" ---(2)
Thus, "(1);(2) \\implies I_{n+1}<I_n"
ii) For this, we use the definition that Integration of a function is area under the curve of that function.
Let "f(x)=x^n; g(x)=x^n\/(1+x^3)"
Given : "0<x<1 \\implies 1+x^3>1 \\implies 1\/(1+x^3)<1"
"\\implies x^n\/(1+x^3)<x^n"
"\\implies f(x)>g(x); \\forall x \\in (0,1)"
Using the above information we sketch approximate graphs of the two functions:
Clearly, "\\int _0 ^1f(x)dx>\\int _0 ^1g(x)dx; \\forall x \\in (0,1)" (as area under g(x) is smaller)
"\\implies \\int _0 ^1x^n\/(1+x^3)dx<\\int _0 ^1x^n dx" -----(Answer)
Comments
Leave a comment