Given f³ (x) = x2sin(x²), compute the derivative of f with respect to x.
f3(x)=x2sin(x2) ⟹ f(x)=(x2sin(x2))13 ⟹ f′(x)=13(x2sin(x2))−23. . [2xsin(x2)+2x3cos(x2)]f^{3}(x)=x^{2}\sin(x^{2}) \\ \implies f(x)=(x^{2}\sin(x^{2}))^{\frac{1}{3}} \\ \implies f^{\prime}(x)=\frac{1}{3}(x^{2}\sin(x^{2}))^{\frac{-2}{3}}. \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ . \ [2x \sin(x^{2}) +2x^{3} \cos(x^{2})]f3(x)=x2sin(x2)⟹f(x)=(x2sin(x2))31⟹f′(x)=31(x2sin(x2))3−2. . [2xsin(x2)+2x3cos(x2)]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments