We use the spherical coordinates
x=rsinφcosθ, y=rsinφsinθ, z=cosφ
Since r=4 , then the parameterization for this sphere
r(θ,φ)=4sinφcosθ+4sinφsinθ+4cosφk
Since we are working on the upper half of the sphere here are the limits on the parameters.
0≤θ≤2π0≤φ≤2π
Since
rθ(θ,φ)=−2sinφsinθi+2sinφcosθjrφ(θ,φ)=2cosφcosθi+2cosφsinθj−2sinφk
Then
rθ×rφ=∣∣i−4sinφsinθ4cosφcosθj4sinφcosθ4cosφsinθk0−4sinφ∣∣=−16sin2φcosθi−16sinφcosφsin2θk−16sin2φsinθj −16sinφcosφcos2θk=−16sin2φcosθi−16sin2φsinθj −16sinφcosφ(sin2θ+cos2θ)k=−16sin2φcosθi−16sin2φsinθj−16sinφcosφk
Hence the magnitude
∥rθ×rφ∥=162sin4φcos2θ+162sin4φsin2θ+162sin2φcos2φ=162sin4φ(cos2θ+sin2θ)+162sin2φcos2φ=162sin2φ(sin2φ+cos2φ)=16sinφ
The surface integral is
S∬zdS=D∬4cosφ(16sinφ)dA=∫02π∫02π32sin(2φ)dφdθ=∫02π(−16cos(2φ))∣∣02πdθ=∫02π16dθ=32π
Comments