We use the spherical coordinates
"x=r \\sin \\varphi \\cos \\theta,\\ \\ \\ y=r \\sin \\varphi \\sin \\theta ,\\ \\ \\ z= \\cos \\varphi"
Since "r=4" , then the parameterization for this sphere
"\\vec{r}(\\theta, \\varphi)=4 \\sin \\varphi \\cos \\theta \\vec{\\imath}+4 \\sin \\varphi \\sin \\theta \\vec{\\jmath}+4 \\cos \\varphi \\vec{k}"
Since we are working on the upper half of the sphere here are the limits on the parameters.
"0 \\leq \\theta \\leq 2 \\pi \\quad 0 \\leq \\varphi \\leq \\frac{\\pi}{2}"
Since
"\\begin{array}{l}\n\\vec{r}_{\\theta}(\\theta, \\varphi)=-2 \\sin \\varphi \\sin \\theta \\vec{i}+2 \\sin \\varphi \\cos \\theta \\vec{j} \\\\\n\\vec{r}_{\\varphi}(\\theta, \\varphi)=2 \\cos \\varphi \\cos \\theta \\vec{i}+2 \\cos \\varphi \\sin \\theta \\vec{j}-2 \\sin \\varphi \\vec{k}\n\\end{array}"
Then
"\\begin{aligned}\n\\vec{r}_{\\theta} \\times \\vec{r}_{\\varphi} &=\\left|\\begin{array}{cc}\n\\vec{i} & \\vec{j} & \\vec{k} \\\\\n-4\\sin \\varphi \\sin \\theta & 4 \\sin \\varphi \\cos \\theta & 0 \\\\\n4 \\cos \\varphi \\cos \\theta & 4 \\cos \\varphi \\sin \\theta & -4\\sin \\varphi\n\\end{array}\\right| \\\\\n&=-16 \\sin ^{2} \\varphi \\cos \\theta \\vec{i}-16 \\sin \\varphi \\cos \\varphi \\sin ^{2} \\theta \\vec{k}-16 \\sin ^{2} \\varphi \\sin \\theta \\vec{j}\\\\\n&\\ \\ \\ \\ \\ \\ -16 \\sin \\varphi \\cos \\varphi \\cos ^{2} \\theta \\vec{k} \\\\\n&=-16 \\sin ^{2} \\varphi \\cos \\theta \\vec{i}-16 \\sin ^{2} \\varphi \\sin \\theta \\vec{j}\\\\\n&\\ \\ \\ \\ \\ -16 \\sin \\varphi \\cos \\varphi\\left(\\sin ^{2} \\theta+\\cos ^{2} \\theta\\right) \\vec{k} \\\\\n&=-16 \\sin ^{2} \\varphi \\cos \\theta \\vec{i}-16 \\sin ^{2} \\varphi \\sin \\theta \\vec{j} -16 \\sin \\varphi \\cos \\varphi \\vec{k}\n\\end{aligned}"
Hence the magnitude
"\\begin{aligned}\n\\left\\|\\vec{r}_{\\theta} \\times \\vec{r}_{\\varphi}\\right\\| &=\\sqrt{16^2 \\sin ^{4} \\varphi \\cos ^{2} \\theta+16^2 \\sin ^{4} \\varphi \\sin ^{2} \\theta+16 ^2\\sin ^{2} \\varphi \\cos ^{2} \\varphi} \\\\\n&=\\sqrt{16^2 \\sin ^{4} \\varphi\\left(\\cos ^{2} \\theta+\\sin ^{2} \\theta\\right)+16^2 \\sin ^{2} \\varphi \\cos ^{2} \\varphi} \\\\\n&=\\sqrt{16^2 \\sin ^{2} \\varphi\\left(\\sin ^{2} \\varphi+\\cos ^{2} \\varphi\\right)}\\\\\n&=16\\sin \\varphi \n\\end{aligned}"
The surface integral is
"\\begin{aligned}\n\\iint\\limits_{S}{{z\\,dS}} &= \\iint\\limits_{D}{{4\\cos \\varphi \\left( {16\\sin \\varphi } \\right)\\,dA}}\\\\\n & = \\int_{{\\,0}}^{{\\,2\\pi }}{{\\int_{{\\,0}}^{{\\,\\frac{\\pi }{2}}}{{32\\sin \\left( {2\\varphi } \\right)\\,d\\varphi }}\\,d\\theta }}\\\\ & = \\int_{{\\,0}}^{{\\,2\\pi }}{{ {\\left( { - 16\\cos \\left( {2\\varphi } \\right)} \\right)} \\bigg|_0^{\\frac{\\pi }{2}}\\,d\\theta }}\\\\ & = \\int_{{\\,0}}^{{\\,2\\pi }}{{16\\,d\\theta }}\\\\ & = 32\\pi \n\\end{aligned}"
Comments
Leave a comment