The cylinder is projected in a circle on the area Oxy. Use the polar coordinate system:
x = p cos ϕ
y = p sin ϕ
|J| = p
0 <= ϕ <= 2 π
Consider:
x2 + y2 = 3
p2 = 3
p = 3\sqrt{3}3
0 <= p <= 3\sqrt{3}3
∬ydS=∬ydxdy=∫02πdϕ∫03p∙psinϕdp=∫02πsinϕ∙\iint ydS = \iint ydxdy = \int{_0^{2π}} dϕ \int{_0^{ \sqrt{3} }}p∙ p sin ϕ dp = \intop{_0^{2π}} sin ϕ∙∬ydS=∬ydxdy=∫02πdϕ∫03p∙psinϕdp=∫02πsinϕ∙ (p3/3)∣03dϕ=∫02πsinϕ∙(33/3)dϕ=3∙∫02πsinϕdϕ=3∙(−cosϕ)∣02π=−3∙(1−1)=0\mid{_0^{ \sqrt{3}}}dϕ = \int{_0^{2π}} sin ϕ ∙ (3 \sqrt{3}/3) dϕ = \sqrt{3}∙ \intop{_0^{2π}}sin ϕ dϕ = \sqrt{3} ∙ (-cosϕ ) \mid{_0^{2π}} = - \sqrt{3}∙ (1-1) = 0∣03dϕ=∫02πsinϕ∙(33/3)dϕ=3∙∫02πsinϕdϕ=3∙(−cosϕ)∣02π=−3∙(1−1)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments