Question #110662
Find the sum of the x and y intercept of any tangent line to the curve √x + √y = √k
1
Expert's answer
2020-04-20T13:37:35-0400
x+y=k\sqrt{x}+\sqrt{y}=\sqrt{k}

ddx(x)+ddx(y)=ddx(k){d\over dx}(\sqrt{x})+{d\over dx}(\sqrt{y})={d\over dx}(\sqrt{k})

12x+12yy=0{1 \over 2\sqrt{x}}+{1 \over 2\sqrt{y}}y'=0

y=yxy'=-{\sqrt{y} \over \sqrt{x}}

Tangent line


yy0=y0x0(xx0)y-y_0=-{\sqrt{y_0} \over \sqrt{x_0}}(x-x_0)

y=y0x0x+x0y0+y0y=-{\sqrt{y_0} \over \sqrt{x_0}}x+\sqrt{x_0}\sqrt{y_0}+y_0y=y0x0x+y0(x0+y0)y=-{\sqrt{y_0} \over \sqrt{x_0}}x+\sqrt{y_0}(\sqrt{x_0}+\sqrt{y_0})

y=y0x0x+ky0y=-{\sqrt{y_0} \over \sqrt{x_0}}x+\sqrt{k}\sqrt{y_0}

x-intercept: y1=0y_1=0


0=y0x0x1+ky00=-{\sqrt{y_0} \over \sqrt{x_0}}x_1+\sqrt{k}\sqrt{y_0}

x1=kx0x_1=\sqrt{k}\sqrt{x_0}

yintercept: x2=0x_2=0


y2=y0x0(0)+ky0y_2=-{\sqrt{y_0} \over \sqrt{x_0}}(0)+\sqrt{k}\sqrt{y_0}

y2=ky0y_2=\sqrt{k}\sqrt{y_0}

 The sum of the x and y intercept of any tangent line to the curve is


x1+y2=kx0+ky0=k(x0+y0)=x_1+y_2=\sqrt{k}\sqrt{x_0}+\sqrt{k}\sqrt{y_0}=\sqrt{k}(\sqrt{x_0}+\sqrt{y_0})=

=kk=k=\sqrt{k}\sqrt{k}=k

The sum of the x and y intercept of any tangent line to the curve is equal to k.k.

At point (0,k)(0, \sqrt{k}) the tangent line is x=0.x=0.

At point (k,0)(\sqrt{k},0) the tangent line is y=0.y=0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Bannor
24.08.21, 11:38

Want to learn with you guys

LATEST TUTORIALS
APPROVED BY CLIENTS