x + y = k \sqrt{x}+\sqrt{y}=\sqrt{k} x + y = k
d d x ( x ) + d d x ( y ) = d d x ( k ) {d\over dx}(\sqrt{x})+{d\over dx}(\sqrt{y})={d\over dx}(\sqrt{k}) d x d ( x ) + d x d ( y ) = d x d ( k )
1 2 x + 1 2 y y ′ = 0 {1 \over 2\sqrt{x}}+{1 \over 2\sqrt{y}}y'=0 2 x 1 + 2 y 1 y ′ = 0
y ′ = − y x y'=-{\sqrt{y} \over \sqrt{x}} y ′ = − x y Tangent line
y − y 0 = − y 0 x 0 ( x − x 0 ) y-y_0=-{\sqrt{y_0} \over \sqrt{x_0}}(x-x_0) y − y 0 = − x 0 y 0 ( x − x 0 )
y = − y 0 x 0 x + x 0 y 0 + y 0 y=-{\sqrt{y_0} \over \sqrt{x_0}}x+\sqrt{x_0}\sqrt{y_0}+y_0 y = − x 0 y 0 x + x 0 y 0 + y 0 y = − y 0 x 0 x + y 0 ( x 0 + y 0 ) y=-{\sqrt{y_0} \over \sqrt{x_0}}x+\sqrt{y_0}(\sqrt{x_0}+\sqrt{y_0}) y = − x 0 y 0 x + y 0 ( x 0 + y 0 )
y = − y 0 x 0 x + k y 0 y=-{\sqrt{y_0} \over \sqrt{x_0}}x+\sqrt{k}\sqrt{y_0} y = − x 0 y 0 x + k y 0 x-intercept: y 1 = 0 y_1=0 y 1 = 0
0 = − y 0 x 0 x 1 + k y 0 0=-{\sqrt{y_0} \over \sqrt{x_0}}x_1+\sqrt{k}\sqrt{y_0} 0 = − x 0 y 0 x 1 + k y 0
x 1 = k x 0 x_1=\sqrt{k}\sqrt{x_0} x 1 = k x 0 yintercept: x 2 = 0 x_2=0 x 2 = 0
y 2 = − y 0 x 0 ( 0 ) + k y 0 y_2=-{\sqrt{y_0} \over \sqrt{x_0}}(0)+\sqrt{k}\sqrt{y_0} y 2 = − x 0 y 0 ( 0 ) + k y 0
y 2 = k y 0 y_2=\sqrt{k}\sqrt{y_0} y 2 = k y 0 The sum of the x and y intercept of any tangent line to the curve is
x 1 + y 2 = k x 0 + k y 0 = k ( x 0 + y 0 ) = x_1+y_2=\sqrt{k}\sqrt{x_0}+\sqrt{k}\sqrt{y_0}=\sqrt{k}(\sqrt{x_0}+\sqrt{y_0})= x 1 + y 2 = k x 0 + k y 0 = k ( x 0 + y 0 ) =
= k k = k =\sqrt{k}\sqrt{k}=k = k k = k The sum of the x and y intercept of any tangent line to the curve is equal to k . k. k .
At point ( 0 , k ) (0, \sqrt{k}) ( 0 , k ) the tangent line is x = 0. x=0. x = 0.
At point ( k , 0 ) (\sqrt{k},0) ( k , 0 ) the tangent line is y = 0. y=0. y = 0.
Comments
Want to learn with you guys