"{d\\over dx}(\\sqrt{x})+{d\\over dx}(\\sqrt{y})={d\\over dx}(\\sqrt{k})"
"{1 \\over 2\\sqrt{x}}+{1 \\over 2\\sqrt{y}}y'=0"
"y'=-{\\sqrt{y} \\over \\sqrt{x}}"
Tangent line
"y=-{\\sqrt{y_0} \\over \\sqrt{x_0}}x+\\sqrt{x_0}\\sqrt{y_0}+y_0""y=-{\\sqrt{y_0} \\over \\sqrt{x_0}}x+\\sqrt{y_0}(\\sqrt{x_0}+\\sqrt{y_0})"
"y=-{\\sqrt{y_0} \\over \\sqrt{x_0}}x+\\sqrt{k}\\sqrt{y_0}"
x-intercept: "y_1=0"
"x_1=\\sqrt{k}\\sqrt{x_0}"
yintercept: "x_2=0"
"y_2=\\sqrt{k}\\sqrt{y_0}"
The sum of the x and y intercept of any tangent line to the curve is
"=\\sqrt{k}\\sqrt{k}=k"
The sum of the x and y intercept of any tangent line to the curve is equal to "k."
At point "(0, \\sqrt{k})" the tangent line is "x=0."
At point "(\\sqrt{k},0)" the tangent line is "y=0."
Comments
Want to learn with you guys
Leave a comment