Question #111448
Evaluate the following integral by first converting to an integral in polar coordinates.

0

2


4

y
2


4

y
2
x
2
d
x
d
y
∫−20∫−4−y24−y2x2dxdy
1
Expert's answer
2020-04-22T19:35:39-0400
204y24y2x2dxdy\displaystyle\int_{-2}^0\displaystyle\int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}}x^2dxdy

x=rcosθ,y=rsinθx=r\cos\theta, y=r\sin\theta

0r2,πθ00\leq r\leq 2, -\pi\leq \theta\leq 0


204y24y2x2dxdy=\displaystyle\int_{-2}^0\displaystyle\int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}}x^2dxdy=

=π002rr2cos2θdrdθ==\displaystyle\int_{-\pi}^0\displaystyle\int_{0}^{2}rr^2\cos^2\theta drd\theta=

=π0[r44]20cos2θdθ==\displaystyle\int_{-\pi}^0\big[{r^4 \over 4}\big]\begin{array}{cc} 2 \\ 0 \end{array}\cos^2\theta d\theta=

=2π0(1+cos(2θ))dθ==2\displaystyle\int_{-\pi}^0 (1+\cos(2\theta)) d\theta=

=[2θ+sin(2θ)]0π=2π=\big[2\theta+\sin(2\theta)\big]\begin{array}{cc} 0\\ -\pi \end{array}=2\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS