∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y \displaystyle\int_{-2}^0\displaystyle\int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}}x^2dxdy ∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y x = r cos θ , y = r sin θ x=r\cos\theta, y=r\sin\theta x = r cos θ , y = r sin θ
0 ≤ r ≤ 2 , − π ≤ θ ≤ 0 0\leq r\leq 2, -\pi\leq \theta\leq 0 0 ≤ r ≤ 2 , − π ≤ θ ≤ 0
∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y = \displaystyle\int_{-2}^0\displaystyle\int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}}x^2dxdy= ∫ − 2 0 ∫ − 4 − y 2 4 − y 2 x 2 d x d y =
= ∫ − π 0 ∫ 0 2 r r 2 cos 2 θ d r d θ = =\displaystyle\int_{-\pi}^0\displaystyle\int_{0}^{2}rr^2\cos^2\theta drd\theta= = ∫ − π 0 ∫ 0 2 r r 2 cos 2 θ d r d θ =
= ∫ − π 0 [ r 4 4 ] 2 0 cos 2 θ d θ = =\displaystyle\int_{-\pi}^0\big[{r^4 \over 4}\big]\begin{array}{cc}
2 \\
0
\end{array}\cos^2\theta d\theta= = ∫ − π 0 [ 4 r 4 ] 2 0 cos 2 θ d θ =
= 2 ∫ − π 0 ( 1 + cos ( 2 θ ) ) d θ = =2\displaystyle\int_{-\pi}^0
(1+\cos(2\theta)) d\theta= = 2 ∫ − π 0 ( 1 + cos ( 2 θ )) d θ =
= [ 2 θ + sin ( 2 θ ) ] 0 − π = 2 π =\big[2\theta+\sin(2\theta)\big]\begin{array}{cc}
0\\
-\pi
\end{array}=2\pi = [ 2 θ + sin ( 2 θ ) ] 0 − π = 2 π
Comments