a) "f(x)=x^2(3x^3-2)^{1\/3}; P=(1,-2)"
Slope "= dy\/dx=2x(3x^3-2)^{1\/3}+x^2(3x^2)\/(3x^3-2)^{2\/3}"
"=2x(3x^3-2)^{1\/3}+3x^4\/(3x^3-2)^{2\/3}"
"=2*1(3*1^3-2)^{1\/3}+3*1^4\/(3*1^3-2)^{2\/3}" at the point (1,-2)
"=2+3=5"
Thus, the tangent has a slope of 5 and passes through the point (1,-2)
"y+2=5(x-1) \\implies y=5x-7" ---(Answer)
b) "f(x)=sin^3xcos^4x; P=(0,R)"
Slope "=dy\/dx=3sin^2xcos^4x(cosx)+4sin^3xcos^3x(-sinx)"
"=3sin^2xcos^5x-4sin^4xcos^3x"
"=sin^2xcos^3x(3cos^2x-4sin^2x)"
"=sin^20cos^30(3cos^20-4sin^20)" at the point (0,R)
"=0"
Thus, the tangent has a slope of 0 and passes through the point (0,R).
"y-R=0*(x-0) \\implies y=R"
Given : "R=4 \\implies y=4" ---(Answer)
Comments
Leave a comment