Answer to Question #110933 in Calculus for please1.3

Question #110933
[img]https://upload.cc/i1/2020/04/20/RAD7Mo.jpg[/img]


question is in picture,R=4
1
Expert's answer
2020-04-30T12:46:15-0400

a) f(x)=x2(3x32)1/3;P=(1,2)f(x)=x^2(3x^3-2)^{1/3}; P=(1,-2)

Slope =dy/dx=2x(3x32)1/3+x2(3x2)/(3x32)2/3= dy/dx=2x(3x^3-2)^{1/3}+x^2(3x^2)/(3x^3-2)^{2/3}

=2x(3x32)1/3+3x4/(3x32)2/3=2x(3x^3-2)^{1/3}+3x^4/(3x^3-2)^{2/3}

=21(3132)1/3+314/(3132)2/3=2*1(3*1^3-2)^{1/3}+3*1^4/(3*1^3-2)^{2/3} at the point (1,-2)

=2+3=5=2+3=5

Thus, the tangent has a slope of 5 and passes through the point (1,-2)

y+2=5(x1)    y=5x7y+2=5(x-1) \implies y=5x-7 ---(Answer)

b) f(x)=sin3xcos4x;P=(0,R)f(x)=sin^3xcos^4x; P=(0,R)

Slope =dy/dx=3sin2xcos4x(cosx)+4sin3xcos3x(sinx)=dy/dx=3sin^2xcos^4x(cosx)+4sin^3xcos^3x(-sinx)

=3sin2xcos5x4sin4xcos3x=3sin^2xcos^5x-4sin^4xcos^3x

=sin2xcos3x(3cos2x4sin2x)=sin^2xcos^3x(3cos^2x-4sin^2x)

=sin20cos30(3cos204sin20)=sin^20cos^30(3cos^20-4sin^20) at the point (0,R)

=0=0

Thus, the tangent has a slope of 0 and passes through the point (0,R).

yR=0(x0)    y=Ry-R=0*(x-0) \implies y=R

Given : R=4    y=4R=4 \implies y=4 ---(Answer)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment