a) f(x)=x2(3x3−2)1/3;P=(1,−2)
Slope =dy/dx=2x(3x3−2)1/3+x2(3x2)/(3x3−2)2/3
=2x(3x3−2)1/3+3x4/(3x3−2)2/3
=2∗1(3∗13−2)1/3+3∗14/(3∗13−2)2/3 at the point (1,-2)
=2+3=5
Thus, the tangent has a slope of 5 and passes through the point (1,-2)
y+2=5(x−1)⟹y=5x−7 ---(Answer)
b) f(x)=sin3xcos4x;P=(0,R)
Slope =dy/dx=3sin2xcos4x(cosx)+4sin3xcos3x(−sinx)
=3sin2xcos5x−4sin4xcos3x
=sin2xcos3x(3cos2x−4sin2x)
=sin20cos30(3cos20−4sin20) at the point (0,R)
=0
Thus, the tangent has a slope of 0 and passes through the point (0,R).
y−R=0∗(x−0)⟹y=R
Given : R=4⟹y=4 ---(Answer)
Comments
Leave a comment