Question #111261
Use Weierstrass’ M-Test to prove that the series ∑(x^nXn^2)

n=1

n converges uniformly in x
the interval .
(0,1/5)
1
Expert's answer
2020-04-22T17:02:09-0400

EXPLANATION

For all x(0,15)x\in \left( 0,\frac { 1 }{ 5 } \right) and n1n\ge 1\quad

0<n2xn<n25n0<{ n }^{ 2 }{ x }^{ n }<\frac { { n }^{ 2 } }{ { 5 }^{ n } } (1)

limn n25nn=limn(nn)25=15<1\lim _{ n\ \dashrightarrow \infty }{ \sqrt [ n ]{ \frac { { n }^{ 2 } }{ { 5 }^{ n } } } } =\lim _{ n\dashrightarrow \infty }{ \frac { { \left( \sqrt [ n ]{ n } \right) }^{ 2 } }{ 5 } =\frac { 1 }{ 5 } <1\quad }(limnnn=1)\left( \lim _{ n\rightarrow \infty }{ \sqrt [ n ]{ n } =1 } \right)

Consequently , by Cauchy root test the series

n=1n25n \sum _{ n=1 }^{ \infty }{ \frac { { n }^{ 2 } }{ { 5 }^{ n } } \quad \quad \quad \ } (2)

converges.

(1) and the convergence of series (2) means that the conditions of Weierstrass’ M-Test are satisfied. Therefore, the series n=1n2xn\sum _{ n=1 }^{ \infty }{ { n }^{ 2 } } { x }^{ n }\quadconverges uniformly on the set (0,15)\left( 0,\frac { 1 }{ 5 } \right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS