EXPLANATION
For all "x\\in \\left( 0,\\frac { 1 }{ 5 } \\right)" and "n\\ge 1\\quad"
"0<{ n }^{ 2 }{ x }^{ n }<\\frac { { n }^{ 2 } }{ { 5 }^{ n } }" (1)
"\\lim _{ n\\ \\dashrightarrow \\infty }{ \\sqrt [ n ]{ \\frac { { n }^{ 2 } }{ { 5 }^{ n } } } } =\\lim _{ n\\dashrightarrow \\infty }{ \\frac { { \\left( \\sqrt [ n ]{ n } \\right) }^{ 2 } }{ 5 } =\\frac { 1 }{ 5 } <1\\quad }""\\left( \\lim _{ n\\rightarrow \\infty }{ \\sqrt [ n ]{ n } =1 } \\right)"
Consequently , by Cauchy root test the series
"\\sum _{ n=1 }^{ \\infty }{ \\frac { { n }^{ 2 } }{ { 5 }^{ n } } \\quad \\quad \\quad \\ }" (2)
converges.
(1) and the convergence of series (2) means that the conditions of Weierstrass’ M-Test are satisfied. Therefore, the series "\\sum _{ n=1 }^{ \\infty }{ { n }^{ 2 } } { x }^{ n }\\quad"converges uniformly on the set "\\left( 0,\\frac { 1 }{ 5 } \\right)"
Comments
Leave a comment