1 STEP: Let's draw a graph of this function
2 STEP: Define integration boundaries
"\\left\\{\\begin{array}{l}\n0\\le r\\le 6-4\\cdot\\cos\\theta\\\\\n0\\le\\theta\\le\\pi-\\text{due to the symmetry of the graph}\n\\end{array}\\right."
Symmetry is indicated in order to calculate only the upper part of the area for which "0\\le\\theta\\le\\pi" , and then multiply the resulting number by 2.
3 STEP: area calculation
Since the graph is given in polar coordinates, we will carry out calculations in polar coordinates.
To do this, we immediately indicate how the area element changes "dS=dxdy=rdrd\\theta"
( More information: https://en.wikipedia.org/wiki/Polar_coordinate_system )
Then,
"S=\\iint_M1dxdy=2\\cdot\\int\\limits_0^\\pi d\\theta\\cdot\\left(\\int\\limits_0^{6-4\\cos\\theta}rdr\\right)=\\\\[0.3cm]\n=2\\cdot\\int\\limits_0^\\pi d\\theta\\cdot\\left(\\left.\\frac{r^2}{2}\\right|_0^{6-4\\cos\\theta}\\right)=\n2\\cdot\\frac{1}{2}\\cdot\\int\\limits_0^\\pi \\left(6-4\\cos\\theta\\right)^2d\\theta=\\\\[0.3cm]\n=\\int\\limits_0^\\pi \\left(36-48\\cos\\theta+16\\cos^2\\theta\\right)d\\theta=\\\\[0.3cm]\n=\\int\\limits_0^\\pi \\left(36-48\\cos\\theta+16\\cdot\\frac{1+\\cos2\\theta}{2}\\right)d\\theta=\\\\[0.3cm]\n=\\int\\limits_0^\\pi \\left(36-48\\cos\\theta+8\\cdot\\left(1+\\cos2\\theta\\right)\\right)d\\theta=\\\\[0.3cm]\n=\\int\\limits_0^\\pi \\left(44-48\\cos\\theta+8\\cos2\\theta\\right)d\\theta=\\\\[0.3cm]\n=\\left.\\left(44\\theta-48\\sin\\theta+8\\cdot\\frac{\\sin2\\theta}{2}\\right)\\right|_0^\\pi=\\\\[0.3cm]\n=\\left(44\\pi-48\\sin\\pi+4\\sin2\\pi\\right)-\\left(44\\cdot0-48\\sin0+4\\sin2\\cdot0\\right)=\\\\[0.3cm]\n=44\\pi-48\\cdot0+4\\cdot0-0+48\\cdot0-4\\cdot0=44\\pi"
ANSWER
"\\boxed{S=48\\pi}"
Comments
Leave a comment