1 STEP: Let's draw a graph of this function
2 STEP: Define integration boundaries
{0≤r≤6−4⋅cosθ0≤θ≤π−due to the symmetry of the graph
Symmetry is indicated in order to calculate only the upper part of the area for which 0≤θ≤π , and then multiply the resulting number by 2.
3 STEP: area calculation
Since the graph is given in polar coordinates, we will carry out calculations in polar coordinates.
To do this, we immediately indicate how the area element changes dS=dxdy=rdrdθ
( More information: https://en.wikipedia.org/wiki/Polar_coordinate_system )
Then,
S=∬M1dxdy=2⋅0∫πdθ⋅⎝⎛0∫6−4cosθrdr⎠⎞==2⋅0∫πdθ⋅(2r2∣∣06−4cosθ)=2⋅21⋅0∫π(6−4cosθ)2dθ==0∫π(36−48cosθ+16cos2θ)dθ==0∫π(36−48cosθ+16⋅21+cos2θ)dθ==0∫π(36−48cosθ+8⋅(1+cos2θ))dθ==0∫π(44−48cosθ+8cos2θ)dθ==(44θ−48sinθ+8⋅2sin2θ)∣∣0π==(44π−48sinπ+4sin2π)−(44⋅0−48sin0+4sin2⋅0)==44π−48⋅0+4⋅0−0+48⋅0−4⋅0=44π
ANSWER
S=48π
Comments