Question #111958
use the first principle definition to find the derivative of f'(a), where [x] is the greatest integer less than or equal to x.
1
Expert's answer
2020-04-29T16:53:28-0400

1 STEP: We give a graph of this function y=xy=\lfloor x\rfloor so that it is easier to consider the derivative by definition





(More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions)

2 STEP: There are 2 cases to consider.

1 case: x(n;n+1),xZx=nx\in(n;n+1), x\notin\mathbb{Z}\longrightarrow\lfloor x\rfloor=n , so



ddxx=limh0x+hxh=limh0nnh=limh00h=0\frac{d}{dx}\lfloor x\rfloor=\lim\limits_{h\to0}\frac{\lfloor x+h\rfloor-\lfloor x\rfloor}{h}=\lim\limits_{h\to0}\frac{n-n}{h}=\lim\limits_{h\to0}\frac{0}{h}=0

Conclusion,



ddxx=0,forxZ\boxed{\frac{d}{dx}\lfloor x\rfloor=0,\quad\text{for}\quad x\notin\mathbb{Z}}

2 case: xZx=nx\in\mathbb{Z}\longrightarrow x=n , so



limh0x+hxh=limh0(n1)nh=limh01h=+limh0+x+hxh=limh0+nnh=limh00h=0limh0x+hxh=+0=limh0+x+hxhlimh0x+hxhddxx,forxZ\lim\limits_{h\to0^-}\frac{\lfloor x+h\rfloor-\lfloor x\rfloor}{h}=\lim\limits_{h\to0^-}\frac{\left(n-1\right)-n}{h}=\lim\limits_{h\to0^-}\frac{-1}{h}=+\infty\\[0.3cm] \lim\limits_{h\to0^+}\frac{\lfloor x+h\rfloor-\lfloor x\rfloor}{h}=\lim\limits_{h\to0^+}\frac{n-n}{h}=\lim\limits_{h\to0^-}\frac{0}{h}=0\\[0.3cm] \lim\limits_{h\to0^-}\frac{\lfloor x+h\rfloor-\lfloor x\rfloor}{h}=+\infty\neq0=\lim\limits_{h\to0^+}\frac{\lfloor x+h\rfloor-\lfloor x\rfloor}{h}\\[0.3cm] \nexists\lim\limits_{h\to0}\frac{\lfloor x+h\rfloor-\lfloor x\rfloor}{h}\longrightarrow\\[0.3cm]\boxed{\nexists\frac{d}{dx}\lfloor x\rfloor,\quad\text{for}\quad x\in\mathbb{Z}}

General conclusion,



ddxx=[0,forxZDNE,forxZ\frac{d}{dx}\lfloor x\rfloor=\left[\begin{array}{l} 0,\quad\text{for}\quad x\notin\mathbb{Z}\\ DNE,\quad\text{for}\quad x\in\mathbb{Z} \end{array}\right.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
30.04.20, 19:28

Dear Bravo, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Bravo
30.04.20, 00:15

Thank you very much I am really inspired by your prompt response.

LATEST TUTORIALS
APPROVED BY CLIENTS