1 STEP: We give a graph of this function y=⌊x⌋ so that it is easier to consider the derivative by definition
(More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions)
2 STEP: There are 2 cases to consider.
1 case: x∈(n;n+1),x∈/Z⟶⌊x⌋=n , so
dxd⌊x⌋=h→0limh⌊x+h⌋−⌊x⌋=h→0limhn−n=h→0limh0=0
Conclusion,
dxd⌊x⌋=0,forx∈/Z
2 case: x∈Z⟶x=n , so
h→0−limh⌊x+h⌋−⌊x⌋=h→0−limh(n−1)−n=h→0−limh−1=+∞h→0+limh⌊x+h⌋−⌊x⌋=h→0+limhn−n=h→0−limh0=0h→0−limh⌊x+h⌋−⌊x⌋=+∞=0=h→0+limh⌊x+h⌋−⌊x⌋∄h→0limh⌊x+h⌋−⌊x⌋⟶∄dxd⌊x⌋,forx∈Z
General conclusion,
dxd⌊x⌋=[0,forx∈/ZDNE,forx∈Z
Comments
Dear Bravo, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much I am really inspired by your prompt response.