1 STEP: We give a graph of this function "y=\\lfloor x\\rfloor" so that it is easier to consider the derivative by definition
(More information: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions)
2 STEP: There are 2 cases to consider.
1 case: "x\\in(n;n+1), x\\notin\\mathbb{Z}\\longrightarrow\\lfloor x\\rfloor=n" , so
"\\frac{d}{dx}\\lfloor x\\rfloor=\\lim\\limits_{h\\to0}\\frac{\\lfloor x+h\\rfloor-\\lfloor x\\rfloor}{h}=\\lim\\limits_{h\\to0}\\frac{n-n}{h}=\\lim\\limits_{h\\to0}\\frac{0}{h}=0"
Conclusion,
"\\boxed{\\frac{d}{dx}\\lfloor x\\rfloor=0,\\quad\\text{for}\\quad x\\notin\\mathbb{Z}}"
2 case: "x\\in\\mathbb{Z}\\longrightarrow x=n" , so
"\\lim\\limits_{h\\to0^-}\\frac{\\lfloor x+h\\rfloor-\\lfloor x\\rfloor}{h}=\\lim\\limits_{h\\to0^-}\\frac{\\left(n-1\\right)-n}{h}=\\lim\\limits_{h\\to0^-}\\frac{-1}{h}=+\\infty\\\\[0.3cm]\n\\lim\\limits_{h\\to0^+}\\frac{\\lfloor x+h\\rfloor-\\lfloor x\\rfloor}{h}=\\lim\\limits_{h\\to0^+}\\frac{n-n}{h}=\\lim\\limits_{h\\to0^-}\\frac{0}{h}=0\\\\[0.3cm]\n\\lim\\limits_{h\\to0^-}\\frac{\\lfloor x+h\\rfloor-\\lfloor x\\rfloor}{h}=+\\infty\\neq0=\\lim\\limits_{h\\to0^+}\\frac{\\lfloor x+h\\rfloor-\\lfloor x\\rfloor}{h}\\\\[0.3cm]\n\\nexists\\lim\\limits_{h\\to0}\\frac{\\lfloor x+h\\rfloor-\\lfloor x\\rfloor}{h}\\longrightarrow\\\\[0.3cm]\\boxed{\\nexists\\frac{d}{dx}\\lfloor x\\rfloor,\\quad\\text{for}\\quad x\\in\\mathbb{Z}}"
General conclusion,
"\\frac{d}{dx}\\lfloor x\\rfloor=\\left[\\begin{array}{l}\n0,\\quad\\text{for}\\quad x\\notin\\mathbb{Z}\\\\\nDNE,\\quad\\text{for}\\quad x\\in\\mathbb{Z}\n\\end{array}\\right."
Comments
Dear Bravo, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much I am really inspired by your prompt response.
Leave a comment