∫¹ ∫2 (sinx² + xy)dx
This integral (Fresnel Sine Integral) does not have a closed form
"Fresnel \\phantom{i}Sine\\phantom{i} Integral(S(z))=\\int_{0}^{z}sin(\\frac{\\pi x^{2}}{2})dx"
hence:
"\\int sin(x^2)dx=[\\frac{\\sqrt{2}\\sqrt{\\pi}}{2}S(\\frac{\\sqrt{2}x}{\\sqrt{\\pi}})+c"
therefore:
"\\int^{2}_{1}(sin(x^2)+xy)dx=[\\frac{\\sqrt{2}\\sqrt{\\pi}}{2}S(\\frac{\\sqrt{2}x}{\\sqrt{\\pi}})+\\frac{x^{2}y}{2}]^{2}_{1}\\\\"
"\\int^{2}_{1}(sin(x^2)+xy)dx=[\\frac{\\sqrt{2}\\sqrt{\\pi}}{2}S(\\frac{\\sqrt{2}(2)}{\\sqrt{\\pi}})+\\frac{(2)^{2}y}{2}]-[\\frac{\\sqrt{2}\\sqrt{\\pi}}{2}S(\\frac{\\sqrt{2}(1)}{\\sqrt{\\pi}})+\\frac{(1)^{2}y}{2}]\\\\"
"\\int^{2}_{1}(sin(x^2)+xy)dx=0.4945081876+1.5y"
Comments
Leave a comment