Question #110059

∫¹ ∫2 (sinx² + xy)dx


1
Expert's answer
2020-04-30T19:47:53-0400

This integral (Fresnel Sine Integral) does not have a closed form

FresneliSineiIntegral(S(z))=0zsin(πx22)dxFresnel \phantom{i}Sine\phantom{i} Integral(S(z))=\int_{0}^{z}sin(\frac{\pi x^{2}}{2})dx

hence:

sin(x2)dx=[2π2S(2xπ)+c\int sin(x^2)dx=[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}x}{\sqrt{\pi}})+c


therefore:

12(sin(x2)+xy)dx=[2π2S(2xπ)+x2y2]12\int^{2}_{1}(sin(x^2)+xy)dx=[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}x}{\sqrt{\pi}})+\frac{x^{2}y}{2}]^{2}_{1}\\

12(sin(x2)+xy)dx=[2π2S(2(2)π)+(2)2y2][2π2S(2(1)π)+(1)2y2]\int^{2}_{1}(sin(x^2)+xy)dx=[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}(2)}{\sqrt{\pi}})+\frac{(2)^{2}y}{2}]-[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}(1)}{\sqrt{\pi}})+\frac{(1)^{2}y}{2}]\\

12(sin(x2)+xy)dx=0.4945081876+1.5y\int^{2}_{1}(sin(x^2)+xy)dx=0.4945081876+1.5y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS