∫ 0 2 ∫ 0 1 ( s i n x 2 + x y ) d y d x = ∫ 0 2 [ s i n x 2 + x 2 ] d x \int^{2}_{0}\int^{1}_{0}(sinx² + xy)dydx=\int^{2}_{0} [sinx^{2}+\frac{x}{2}]dx ∫ 0 2 ∫ 0 1 ( s in x 2 + x y ) d y d x = ∫ 0 2 [ s in x 2 + 2 x ] d x
∫ 0 2 ∫ 0 1 ( s i n x 2 + x y ) d y d x = ∫ 0 2 [ s i n x 2 + x 2 ] d x \int^{2}_{0}\int^{1}_{0}(sinx² + xy)dydx=\int^{2}_{0} [sinx^{2}+\frac{x}{2}]dx ∫ 0 2 ∫ 0 1 ( s in x 2 + x y ) d y d x = ∫ 0 2 [ s in x 2 + 2 x ] d x
F r e s n e l i S i n e i I n t e g r a l ( S ( u ) ) = ∫ 0 u s i n ( π x 2 2 ) d x Fresnel \phantom{i}Sine\phantom{i} Integral(S(u))=\int_{0}^{u}sin(\frac{\pi x^{2}}{2})dx F res n e l i S in e i I n t e g r a l ( S ( u )) = ∫ 0 u s in ( 2 π x 2 ) d x
then:
∫ s i n ( x 2 ) d x = [ 2 π 2 S ( 2 x π ) + A \int sin(x^2)dx=[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}x}{\sqrt{\pi}})+A ∫ s in ( x 2 ) d x = [ 2 2 π S ( π 2 x ) + A
therefore
∫ 0 2 [ s i n x 2 + x 2 ] d x = [ 2 π 2 S ( 2 x π ) + x 2 4 ] 0 2 \int^{2}_{0} [sinx^{2}+\frac{x}{2}]dx=[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}x}{\sqrt{\pi}})+\frac{x^{2}}{4}]^{2}_{0} ∫ 0 2 [ s in x 2 + 2 x ] d x = [ 2 2 π S ( π 2 x ) + 4 x 2 ] 0 2
∫ 0 2 [ s i n x 2 + x 2 ] d x = [ 2 π 2 S ( 2 ( 2 ) π ) + ( 2 ) 2 4 ] − [ 2 π 2 S ( 2 ( 0 ) π ) + ( 0 ) 2 4 ] \int^{2}_{0} [sinx^{2}+\frac{x}{2}]dx=[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}(2)}{\sqrt{\pi}})+\frac{(2)^{2}}{4}]-[\frac{\sqrt{2}\sqrt{\pi}}{2}S(\frac{\sqrt{2}(0)}{\sqrt{\pi}})+\frac{(0)^{2}}{4}] ∫ 0 2 [ s in x 2 + 2 x ] d x = [ 2 2 π S ( π 2 ( 2 ) ) + 4 ( 2 ) 2 ] − [ 2 2 π S ( π 2 ( 0 ) ) + 4 ( 0 ) 2 ]
hence:
∫ 0 2 [ s i n x 2 + x 2 ] d x = 1.80477649 \int^{2}_{0} [sinx^{2}+\frac{x}{2}]dx=1.80477649 ∫ 0 2 [ s in x 2 + 2 x ] d x = 1.80477649
Comments