∫02∫01(sinx2+xy)dydx=∫02[sinx2+2x]dx
∫02∫01(sinx2+xy)dydx=∫02[sinx2+2x]dx
FresneliSineiIntegral(S(u))=∫0usin(2πx2)dx
then:
∫sin(x2)dx=[22πS(π2x)+A
therefore
∫02[sinx2+2x]dx=[22πS(π2x)+4x2]02
∫02[sinx2+2x]dx=[22πS(π2(2))+4(2)2]−[22πS(π2(0))+4(0)2]
hence:
∫02[sinx2+2x]dx=1.80477649
Comments