Question #110054
∫¹∫²(x) = cotx + sinx dx
1
Expert's answer
2020-04-23T17:25:25-0400

Given,


12(cotx+sinx)dx\int_1 ^2 ( cot x + sin x) dx



=12cotxdx+12sinxdx= \int_1 ^2 cot x dx + \int_1 ^2 sin x dx


=[ lnsinx ]12[cosx]12= [ \space ln|sin x| \space ]_1 ^2 - [cos x]_1 ^2


=lnsin2lnsin1(cos2cos1)= ln |sin2 | - ln |sin 1| - ( cos 2 - cos 1)


=lnsin2lnsin1cos2+cos1= ln |sin2 | - ln |sin 1| - cos 2 + cos 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS