A . ) ∫ 1 0 x 3 x 4 + 1 d x A.) \int_1^0 x^3 \sqrt{x^4 + 1} \, dx A . ) ∫ 1 0 x 3 x 4 + 1 d x
Let us assume that:
x 4 + 1 = u ⇒ 4 x 3 d x = d u x^4 + 1 = u \\
\Rightarrow 4x^3 \, dx = du x 4 + 1 = u ⇒ 4 x 3 d x = d u
⇒ x 3 d x = d u 4 \Rightarrow x^3 \, dx =\frac{du}{4} ⇒ x 3 d x = 4 d u
When:
x = 1 x = 1 x = 1
Then:
u = 1 4 + 1 = 2 u = 1^4 + 1 = 2 u = 1 4 + 1 = 2
Again, when:
x = 0 x = 0 x = 0
Then:
u = 0 4 + 1 = 1 u = 0^4 + 1 = 1 u = 0 4 + 1 = 1
Substituting u = x 4 + 1 u = x^4 + 1 u = x 4 + 1 into the integration and integrating with respect to d u du d u , we have:
= 1 4 ∫ 2 1 u d u = \frac{1}{4} \int_2^1 \sqrt{u} \, du = 4 1 ∫ 2 1 u d u
= 1 4 ∫ 2 1 u 1 2 d u = \frac{1}{4} \int_2^1 u^{\frac{1}{2}} \, du = 4 1 ∫ 2 1 u 2 1 d u
= 1 4 [ u 3 2 3 2 ] 2 1 = \frac{1}{4} \left[ \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right]_2^1 = 4 1 [ 2 3 u 2 3 ] 2 1 [ ∵ ∫ x n d x = x n + 1 n + 1 ] \hspace{1 cm} \left[ \because \int x^n \, dx = \frac{x^{n+1}}{n+1} \right] [ ∵ ∫ x n d x = n + 1 x n + 1 ]
= 1 6 [ u 3 2 ] 2 1 = \frac{1}{6} \left[ u^{\frac{3}{2}} \right]_2^1 = 6 1 [ u 2 3 ] 2 1
= 1 6 [ 1 3 2 − 2 3 2 ] = 1 − 2 2 6 = \frac{1}{6} \left[ 1^{\frac{3}{2}} - 2^{\frac{3}{2}} \right] \\
= \frac{1 - 2\sqrt{2}}{6} = 6 1 [ 1 2 3 − 2 2 3 ] = 6 1 − 2 2
\\
B.) ∫ π 4 0 tan 7 ( x ) sec 2 ( x ) d x \int_{\frac{\pi}{4}}^0 \tan^7 (x) \sec^2 (x) \, dx ∫ 4 π 0 tan 7 ( x ) sec 2 ( x ) d x
Let us assume that:
t a n ( x ) = u ⇒ s e c 2 ( x ) d x = d u tan (x) = u \\
\Rightarrow sec^2 (x) \, dx = du t an ( x ) = u ⇒ se c 2 ( x ) d x = d u
When:
x = π 4 x = \frac{\pi}{4} x = 4 π
Then:
u = tan ( π 4 ) = 1 u = \tan (\frac{\pi}{4}) = 1 u = tan ( 4 π ) = 1
Again, when:
x = 0 x = 0 x = 0
Then:
u = tan ( 0 ) = 0 u = \tan (0) = 0 u = tan ( 0 ) = 0
Substituting u = tan ( x ) u = \tan (x) u = tan ( x ) into the integration and integrating with respect to d u du d u , we have:
= ∫ 1 0 u 7 d u = 1 8 [ u 8 ] 1 0 = \int_1^0 u^7 \, du \\
= \frac{1}{8} \left[ u^8 \right]_1^0 = ∫ 1 0 u 7 d u = 8 1 [ u 8 ] 1 0 [ ∵ ∫ x n d x = x n + 1 n + 1 ] \hspace{1 cm} \left[ \because \int x^n \, dx = \frac{x^{n+1}}{n+1} \right] [ ∵ ∫ x n d x = n + 1 x n + 1 ]
= − 1 8 = - \frac{1}{8} = − 8 1
\\
C.) ∫ sec 2 ( cos ( x ) ) sin ( x ) d x \int \sec^2 (\cos(x)) \sin (x) \, dx ∫ sec 2 ( cos ( x )) sin ( x ) d x
Let us assume that:
cos ( x ) = u ⇒ − sin ( x ) d x = d u \cos(x) = u \\
\Rightarrow - \sin (x) \, dx = du cos ( x ) = u ⇒ − sin ( x ) d x = d u
Substituting u = cos ( x ) u = \cos (x) u = cos ( x ) into the integration and integrating with respect to d u du d u , we have:
= − ∫ s e c 2 ( u ) d u = − t a n ( u ) + C = - \int sec^2 (u) \, du \\
= - tan (u) + C \hspace{1 cm} = − ∫ se c 2 ( u ) d u = − t an ( u ) + C [ ∵ ∫ sec 2 ( x ) d x = tan ( x ) + C ] \left[ \because \int \sec^2 (x) \, dx = \tan (x) + C \right] [ ∵ ∫ sec 2 ( x ) d x = tan ( x ) + C ]
Where C is a constant of integration.
Undo substitution and we have:
= − tan ( cos ( x ) ) + C = - \tan (\cos(x)) + C = − tan ( cos ( x )) + C [ ∵ u = cos ( x ) ] \hspace{1 cm} \left[ \because u = \cos(x) \right] [ ∵ u = cos ( x ) ]
Comments