"A.) \\int_1^0 x^3 \\sqrt{x^4 + 1} \\, dx"
Let us assume that:
"x^4 + 1 = u \\\\\n\\Rightarrow 4x^3 \\, dx = du"
"\\Rightarrow x^3 \\, dx =\\frac{du}{4}"
When:
"x = 1"
Then:
"u = 1^4 + 1 = 2"
Again, when:
"x = 0"
Then:
"u = 0^4 + 1 = 1"
Substituting "u = x^4 + 1" into the integration and integrating with respect to "du" , we have:
"= \\frac{1}{4} \\int_2^1 \\sqrt{u} \\, du"
"= \\frac{1}{4} \\int_2^1 u^{\\frac{1}{2}} \\, du"
"= \\frac{1}{4} \\left[ \\frac{u^{\\frac{3}{2}}}{\\frac{3}{2}} \\right]_2^1" "\\hspace{1 cm} \\left[ \\because \\int x^n \\, dx = \\frac{x^{n+1}}{n+1} \\right]"
"= \\frac{1}{6} \\left[ u^{\\frac{3}{2}} \\right]_2^1"
"= \\frac{1}{6} \\left[ 1^{\\frac{3}{2}} - 2^{\\frac{3}{2}} \\right] \\\\\n= \\frac{1 - 2\\sqrt{2}}{6}"
"\\\\"
B.) "\\int_{\\frac{\\pi}{4}}^0 \\tan^7 (x) \\sec^2 (x) \\, dx"
Let us assume that:
"tan (x) = u \\\\\n\\Rightarrow sec^2 (x) \\, dx = du"
When:
"x = \\frac{\\pi}{4}"
Then:
"u = \\tan (\\frac{\\pi}{4}) = 1"
Again, when:
"x = 0"
Then:
"u = \\tan (0) = 0"
Substituting "u = \\tan (x)" into the integration and integrating with respect to "du" , we have:
"= \\int_1^0 u^7 \\, du \\\\\n= \\frac{1}{8} \\left[ u^8 \\right]_1^0" "\\hspace{1 cm} \\left[ \\because \\int x^n \\, dx = \\frac{x^{n+1}}{n+1} \\right]"
"= - \\frac{1}{8}"
"\\\\"
C.) "\\int \\sec^2 (\\cos(x)) \\sin (x) \\, dx"
Let us assume that:
"\\cos(x) = u \\\\\n\\Rightarrow - \\sin (x) \\, dx = du"
Substituting "u = \\cos (x)" into the integration and integrating with respect to "du" , we have:
"= - \\int sec^2 (u) \\, du \\\\\n= - tan (u) + C \\hspace{1 cm}" "\\left[ \\because \\int \\sec^2 (x) \\, dx = \\tan (x) + C \\right]"
Where C is a constant of integration.
Undo substitution and we have:
"= - \\tan (\\cos(x)) + C" "\\hspace{1 cm} \\left[ \\because u = \\cos(x) \\right]"
Comments
Leave a comment