(A). I = ∫ ( 3 x + 1 ) ( 2 x + 3 ) 2 − 4 d x = 1 2 ∫ ( 3 ( u − 3 ) 2 + 1 ) u 2 − 4 ) d u I=\int (3x+1)\sqrt{(2x+3)^2-4}dx=\frac{1}{2}\int(\frac{3(u-3)}{2}+1)\sqrt{u^2-4})du I = ∫ ( 3 x + 1 ) ( 2 x + 3 ) 2 − 4 d x = 2 1 ∫ ( 2 3 ( u − 3 ) + 1 ) u 2 − 4 ) d u
where u = 2 x + 3 u=2x+3 u = 2 x + 3 hence I = 3 4 ∫ u u 2 − 4 d u − 7 4 ∫ u 2 − 4 d u I=\frac{3}{4}\int u\sqrt{u^2-4} du-\frac{7}{4}\int\sqrt{u^2-4} du I = 4 3 ∫ u u 2 − 4 d u − 4 7 ∫ u 2 − 4 d u
if u = 2 c o s t , d u = 2 s i n t cos 2 t d t u=\frac{2}{ \ cost},du=\frac{2\ sint}{ \cos^2t}dt u = cos t 2 , d u = c o s 2 t 2 s in t d t then I = 3 ∫ sin 3 t cos 4 t d t − 7 2 ∫ sin 2 t cos 3 t d t I=3\int\frac{ \sin^3t}{ \cos^4t} dt-\frac{7}{2}\int \frac{ \sin^2t}{\cos^3t} dt I = 3 ∫ c o s 4 t s i n 3 t d t − 2 7 ∫ c o s 3 t s i n 2 t d t
as H.B.Dwight Tables of integrals , N.Y.,The Mcmillan corp,1961,f.(452.23),f.(452.39) hence
I = 1 − 3 cos 2 t cos 3 t − 7 2 ( s i n t 2 c o s 2 t − 1 2 ln tan ( π 4 + t 2 ) ) I=\frac{1-3\cos^2t}{ \cos^3t}-\frac{7}{2}(\frac{ \ sint}{2\ cos^2t}-\frac{1}{2}\ln\tan(\frac{\pi}{4}+\frac{t}{2})) I = c o s 3 t 1 − 3 c o s 2 t − 2 7 ( 2 co s 2 t s in t − 2 1 ln tan ( 4 π + 2 t )) where t = arccos 2 2 x + 3 t=\arccos\frac{2}{2x+3} t = arccos 2 x + 3 2
(B). I = ∫ ( 1 x + 1 + 1 x 2 + 4 ) d x = ln I=\int(\frac{1}{x+1}+\frac{1}{x^2+4}) dx= \ln I = ∫ ( x + 1 1 + x 2 + 4 1 ) d x = ln |x + 1 x+1 x + 1 |+ 1 2 arctan x 2 + C +\frac{1}{2}\arctan\frac{x}{2}+C + 2 1 arctan 2 x + C
Comments
I didn't understand about arctan arccos. Please elaborate about it