(A). I=∫(3x+1)(2x+3)2−4dx=21∫(23(u−3)+1)u2−4)du
where u=2x+3 hence I=43∫uu2−4du−47∫u2−4du
if u= cost2,du=cos2t2 sintdt then I=3∫cos4tsin3tdt−27∫cos3tsin2tdt
as H.B.Dwight Tables of integrals , N.Y.,The Mcmillan corp,1961,f.(452.23),f.(452.39) hence
I=cos3t1−3cos2t−27(2 cos2t sint−21lntan(4π+2t)) where t=arccos2x+32
(B). I=∫(x+11+x2+41)dx=ln |x+1 |+21arctan2x+C
Comments
I didn't understand about arctan arccos. Please elaborate about it