Question #104842
Integrate
(A)∫ (3x+1)√4x^2+12x+5 dx
(B)∫x^2+x+5\(x^2+4)(x+1) dx
1
Expert's answer
2020-03-19T15:55:36-0400

(A). I=(3x+1)(2x+3)24dx=12(3(u3)2+1)u24)duI=\int (3x+1)\sqrt{(2x+3)^2-4}dx=\frac{1}{2}\int(\frac{3(u-3)}{2}+1)\sqrt{u^2-4})du

where u=2x+3u=2x+3 hence I=34uu24du74u24duI=\frac{3}{4}\int u\sqrt{u^2-4} du-\frac{7}{4}\int\sqrt{u^2-4} du

if u=2 cost,du=2 sintcos2tdtu=\frac{2}{ \ cost},du=\frac{2\ sint}{ \cos^2t}dt then I=3sin3tcos4tdt72sin2tcos3tdtI=3\int\frac{ \sin^3t}{ \cos^4t} dt-\frac{7}{2}\int \frac{ \sin^2t}{\cos^3t} dt

as H.B.Dwight Tables of integrals , N.Y.,The Mcmillan corp,1961,f.(452.23),f.(452.39) hence

I=13cos2tcos3t72( sint2 cos2t12lntan(π4+t2))I=\frac{1-3\cos^2t}{ \cos^3t}-\frac{7}{2}(\frac{ \ sint}{2\ cos^2t}-\frac{1}{2}\ln\tan(\frac{\pi}{4}+\frac{t}{2})) where t=arccos22x+3t=\arccos\frac{2}{2x+3}

(B). I=(1x+1+1x2+4)dx=lnI=\int(\frac{1}{x+1}+\frac{1}{x^2+4}) dx= \ln |x+1x+1 |+12arctanx2+C+\frac{1}{2}\arctan\frac{x}{2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Shubham
30.10.20, 17:52

I didn't understand about arctan arccos. Please elaborate about it

LATEST TUTORIALS
APPROVED BY CLIENTS