The length of the curve is calculated by the formula:
wrere "x_1" , "x_2" - curve borders.
Bring the parabola to the form "x=f(y)":
"y=6t\\rarr t=\\frac{y}{6}" ;
"x=3t^2=\\frac{y^2}{12}" .
Find the boundaries of the curve as the intersection of two functions.
"\\begin{cases}\n 3x+y-3=0 \\\\\n x=\\frac{y^2}{12}\n\\end{cases}\\rarr \\frac{y^2}{4}+y-3=0 \\rarr y_1=-6, y_2=2".
Calculate the derivative of the function "f(y)" :
"f'(y)=(\\frac{y^2}{12})'=\\frac{y}{6}\\rarr (f'(y))^2=\\frac{y^2}{36}" .
We calculate the resulting integral
Use hyperbolic substitution
"y=6\\sinh{u} , \\sqrt{36+y^2}=6\\cosh{u},"
"dy=6\\cosh{u}\\space du, u=arcsinh({\\frac{y}{6}}),"
"u_1=arcsin({\\frac{y_1}{6}})=-arcsinh(1),""u_2=arcsin({\\frac{y_2}{6}})=arcsinh(\\frac{1}{3})."
We have
"\\int^{2}_{-6}\\sqrt{1+\\frac{y^2}{36}}dy=\\frac{1}{6}\\int_{-arcsin(1)}^{arcsin(\\frac{1}{3})}36\\cosh^2{u}\\space du=6\\int_{-arcsin(1)}^{arcsin(\\frac{1}{3})}\\frac{\\cosh{2u}+1}{2}du=6(\\frac{1}{4}\\sinh{2u}+\\frac{u}{2})|^{arcsin(\\frac{1}{3})}_{-arcsin(1)}=(3\\sinh{u}\\space \\cosh{u}+3u)|^{arcsin(\\frac{1}{3})}_{-arcsin(1)}=\\frac{\\sqrt{10}}{3}+3\\sqrt2+3arcsinh(\\frac{1}{3})+3arcsinh(1)\u22488.923"
Comments
Leave a comment