The length of the curve is calculated by the formula:
l=∫x1x21+(f′(x))2dx wrere x1 , x2 - curve borders.
Bring the parabola to the form x=f(y):
y=6t→t=6y ;
x=3t2=12y2 .
Find the boundaries of the curve as the intersection of two functions.
{3x+y−3=0x=12y2→4y2+y−3=0→y1=−6,y2=2.
Calculate the derivative of the function f(y) :
f′(y)=(12y2)′=6y→(f′(y))2=36y2 .
We calculate the resulting integral
∫−621+36y2dy=61∫−6236+y2dy
Use hyperbolic substitution
y=6sinhu,36+y2=6coshu,
dy=6coshu du,u=arcsinh(6y),
u1=arcsin(6y1)=−arcsinh(1),u2=arcsin(6y2)=arcsinh(31).
We have
∫−621+36y2dy=61∫−arcsin(1)arcsin(31)36cosh2u du=6∫−arcsin(1)arcsin(31)2cosh2u+1du=6(41sinh2u+2u)∣−arcsin(1)arcsin(31)=(3sinhu coshu+3u)∣−arcsin(1)arcsin(31)=310+32+3arcsinh(31)+3arcsinh(1)≈8.923
Comments