Question #104839
Find the length of the portion of the parabola x =3t^2,y=6t cut off by the line 3x+y-3=0
1
Expert's answer
2020-03-10T12:52:50-0400

The length of the curve is calculated by the formula:


l=x1x21+(f(x))2dxl=\int^{x_2}_{x_1}\sqrt{1+(f'(x))^2}dx

wrere x1x_1 , x2x_2 - curve borders.


Bring the parabola to the form x=f(y)x=f(y):

y=6tt=y6y=6t\rarr t=\frac{y}{6} ;

x=3t2=y212x=3t^2=\frac{y^2}{12} .


Find the boundaries of the curve as the intersection of two functions.

{3x+y3=0x=y212y24+y3=0y1=6,y2=2\begin{cases} 3x+y-3=0 \\ x=\frac{y^2}{12} \end{cases}\rarr \frac{y^2}{4}+y-3=0 \rarr y_1=-6, y_2=2.


Calculate the derivative of the function f(y)f(y) :

f(y)=(y212)=y6(f(y))2=y236f'(y)=(\frac{y^2}{12})'=\frac{y}{6}\rarr (f'(y))^2=\frac{y^2}{36} .


We calculate the resulting integral


621+y236dy=166236+y2dy\int^{2}_{-6}\sqrt{1+\frac{y^2}{36}}dy=\frac{1}{6}\int^{2}_{-6}\sqrt{36+y^2}dy


Use hyperbolic substitution

y=6sinhu,36+y2=6coshu,y=6\sinh{u} , \sqrt{36+y^2}=6\cosh{u},

dy=6coshu du,u=arcsinh(y6),dy=6\cosh{u}\space du, u=arcsinh({\frac{y}{6}}),

u1=arcsin(y16)=arcsinh(1),u_1=arcsin({\frac{y_1}{6}})=-arcsinh(1),u2=arcsin(y26)=arcsinh(13).u_2=arcsin({\frac{y_2}{6}})=arcsinh(\frac{1}{3}).

We have

621+y236dy=16arcsin(1)arcsin(13)36cosh2u du=6arcsin(1)arcsin(13)cosh2u+12du=6(14sinh2u+u2)arcsin(1)arcsin(13)=(3sinhu coshu+3u)arcsin(1)arcsin(13)=103+32+3arcsinh(13)+3arcsinh(1)8.923\int^{2}_{-6}\sqrt{1+\frac{y^2}{36}}dy=\frac{1}{6}\int_{-arcsin(1)}^{arcsin(\frac{1}{3})}36\cosh^2{u}\space du=6\int_{-arcsin(1)}^{arcsin(\frac{1}{3})}\frac{\cosh{2u}+1}{2}du=6(\frac{1}{4}\sinh{2u}+\frac{u}{2})|^{arcsin(\frac{1}{3})}_{-arcsin(1)}=(3\sinh{u}\space \cosh{u}+3u)|^{arcsin(\frac{1}{3})}_{-arcsin(1)}=\frac{\sqrt{10}}{3}+3\sqrt2+3arcsinh(\frac{1}{3})+3arcsinh(1)≈8.923


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS