The length of the curve is calculated by the formula:
l = ∫ x 1 x 2 1 + ( f ′ ( x ) ) 2 d x l=\int^{x_2}_{x_1}\sqrt{1+(f'(x))^2}dx l = ∫ x 1 x 2 1 + ( f ′ ( x ) ) 2 d x wrere x 1 x_1 x 1 , x 2 x_2 x 2 - curve borders.
Bring the parabola to the form x = f ( y ) x=f(y) x = f ( y ) :
y = 6 t → t = y 6 y=6t\rarr t=\frac{y}{6} y = 6 t → t = 6 y ;
x = 3 t 2 = y 2 12 x=3t^2=\frac{y^2}{12} x = 3 t 2 = 12 y 2 .
Find the boundaries of the curve as the intersection of two functions.
{ 3 x + y − 3 = 0 x = y 2 12 → y 2 4 + y − 3 = 0 → y 1 = − 6 , y 2 = 2 \begin{cases}
3x+y-3=0 \\
x=\frac{y^2}{12}
\end{cases}\rarr \frac{y^2}{4}+y-3=0 \rarr y_1=-6, y_2=2 { 3 x + y − 3 = 0 x = 12 y 2 → 4 y 2 + y − 3 = 0 → y 1 = − 6 , y 2 = 2 .
Calculate the derivative of the function f ( y ) f(y) f ( y ) :
f ′ ( y ) = ( y 2 12 ) ′ = y 6 → ( f ′ ( y ) ) 2 = y 2 36 f'(y)=(\frac{y^2}{12})'=\frac{y}{6}\rarr (f'(y))^2=\frac{y^2}{36} f ′ ( y ) = ( 12 y 2 ) ′ = 6 y → ( f ′ ( y ) ) 2 = 36 y 2 .
We calculate the resulting integral
∫ − 6 2 1 + y 2 36 d y = 1 6 ∫ − 6 2 36 + y 2 d y \int^{2}_{-6}\sqrt{1+\frac{y^2}{36}}dy=\frac{1}{6}\int^{2}_{-6}\sqrt{36+y^2}dy ∫ − 6 2 1 + 36 y 2 d y = 6 1 ∫ − 6 2 36 + y 2 d y
Use hyperbolic substitution
y = 6 sinh u , 36 + y 2 = 6 cosh u , y=6\sinh{u} , \sqrt{36+y^2}=6\cosh{u}, y = 6 sinh u , 36 + y 2 = 6 cosh u ,
d y = 6 cosh u d u , u = a r c s i n h ( y 6 ) , dy=6\cosh{u}\space du, u=arcsinh({\frac{y}{6}}), d y = 6 cosh u d u , u = a rcs inh ( 6 y ) ,
u 1 = a r c s i n ( y 1 6 ) = − a r c s i n h ( 1 ) , u_1=arcsin({\frac{y_1}{6}})=-arcsinh(1), u 1 = a rcs in ( 6 y 1 ) = − a rcs inh ( 1 ) , u 2 = a r c s i n ( y 2 6 ) = a r c s i n h ( 1 3 ) . u_2=arcsin({\frac{y_2}{6}})=arcsinh(\frac{1}{3}). u 2 = a rcs in ( 6 y 2 ) = a rcs inh ( 3 1 ) .
We have
∫ − 6 2 1 + y 2 36 d y = 1 6 ∫ − a r c s i n ( 1 ) a r c s i n ( 1 3 ) 36 cosh 2 u d u = 6 ∫ − a r c s i n ( 1 ) a r c s i n ( 1 3 ) cosh 2 u + 1 2 d u = 6 ( 1 4 sinh 2 u + u 2 ) ∣ − a r c s i n ( 1 ) a r c s i n ( 1 3 ) = ( 3 sinh u cosh u + 3 u ) ∣ − a r c s i n ( 1 ) a r c s i n ( 1 3 ) = 10 3 + 3 2 + 3 a r c s i n h ( 1 3 ) + 3 a r c s i n h ( 1 ) ≈ 8.923 \int^{2}_{-6}\sqrt{1+\frac{y^2}{36}}dy=\frac{1}{6}\int_{-arcsin(1)}^{arcsin(\frac{1}{3})}36\cosh^2{u}\space du=6\int_{-arcsin(1)}^{arcsin(\frac{1}{3})}\frac{\cosh{2u}+1}{2}du=6(\frac{1}{4}\sinh{2u}+\frac{u}{2})|^{arcsin(\frac{1}{3})}_{-arcsin(1)}=(3\sinh{u}\space \cosh{u}+3u)|^{arcsin(\frac{1}{3})}_{-arcsin(1)}=\frac{\sqrt{10}}{3}+3\sqrt2+3arcsinh(\frac{1}{3})+3arcsinh(1)≈8.923 ∫ − 6 2 1 + 36 y 2 d y = 6 1 ∫ − a rcs in ( 1 ) a rcs in ( 3 1 ) 36 cosh 2 u d u = 6 ∫ − a rcs in ( 1 ) a rcs in ( 3 1 ) 2 c o s h 2 u + 1 d u = 6 ( 4 1 sinh 2 u + 2 u ) ∣ − a rcs in ( 1 ) a rcs in ( 3 1 ) = ( 3 sinh u cosh u + 3 u ) ∣ − a rcs in ( 1 ) a rcs in ( 3 1 ) = 3 10 + 3 2 + 3 a rcs inh ( 3 1 ) + 3 a rcs inh ( 1 ) ≈ 8.923
Comments