Question #104830
Differentiate y w.r.t x in the following cases:
(A) y= ln (x ln x)
1
Expert's answer
2020-03-10T13:01:59-0400

The equation is given by:

y=ln(xln(x))y = \ln \left( x \ln (x) \right)

Derivative of yy with respect to xx is:

dydx=ddx(ln(xln(x)))\frac{dy}{dx} = \frac{d}{dx} \left( \ln \left( x \ln (x) \right) \right)

=1xln(x)ddx(xln(x))\,\,\,\,\,\,\,\,= \frac{1}{x \ln (x)} \frac{d}{dx} \left( x \ln (x) \right) [F(x)=(f(g(x)))g(x)WhereF(x)=f(g(x))]\hspace{1 cm} \left[ \because F^{'}(x) = (f(g(x)))^{'} g^{'} (x) \, Where \, F(x) = f(g(x)) \right]

=1xln(x)[xddx(ln(x))+ln(x)ddx(x)]\,\,\,\,\,\,\,\,= \frac{1}{x \ln (x) } \left[ x \frac{d}{dx} (\ln (x)) + \ln (x) \frac{d}{dx} (x) \right] [ddx(f(x)g(x))=f(x)ddx(g(x))+g(x)ddx(f(x))]\hspace{1 cm} \left[ \because \frac{d}{dx} (f(x)g(x)) = f(x) \frac{d}{dx} (g(x)) + g(x) \frac{d}{dx} (f(x)) \right]

=1xln(x)[x1x+ln(x)1]\,\,\,\,\,\,\,\,= \frac{1}{x \ln (x)} \left[ x \cdot \frac{1}{x} + \ln (x) \cdot 1 \right] [ddx(ln(x))=1xandddx(xn)=nxn1]\hspace{1 cm} \left[ \because \frac{d}{dx} (\ln (x)) = \frac{1}{x} \, and \, \frac{d}{dx} (x^n) = nx^{n-1} \right]

=ln(x)+1xln(x)\,\,\,\,\,\,\,\,= \frac{\ln (x) + 1}{x \ln (x)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS