The equation is given by:
"y = \\ln \\left( x \\ln (x) \\right)"
Derivative of "y" with respect to "x" is:
"\\frac{dy}{dx} = \\frac{d}{dx} \\left( \\ln \\left( x \\ln (x) \\right) \\right)"
"\\,\\,\\,\\,\\,\\,\\,\\,= \\frac{1}{x \\ln (x)} \\frac{d}{dx} \\left( x \\ln (x) \\right)" "\\hspace{1 cm} \\left[ \\because F^{'}(x) = (f(g(x)))^{'} g^{'} (x) \\, Where \\, F(x) = f(g(x)) \\right]"
"\\,\\,\\,\\,\\,\\,\\,\\,= \\frac{1}{x \\ln (x) } \\left[ x \\frac{d}{dx} (\\ln (x)) + \\ln (x) \\frac{d}{dx} (x) \\right]" "\\hspace{1 cm} \\left[ \\because \\frac{d}{dx} (f(x)g(x)) = f(x) \\frac{d}{dx} (g(x)) + g(x) \\frac{d}{dx} (f(x)) \\right]"
"\\,\\,\\,\\,\\,\\,\\,\\,= \\frac{1}{x \\ln (x)} \\left[ x \\cdot \\frac{1}{x} + \\ln (x) \\cdot 1 \\right]" "\\hspace{1 cm} \\left[ \\because \\frac{d}{dx} (\\ln (x)) = \\frac{1}{x} \\, and \\, \\frac{d}{dx} (x^n) = nx^{n-1} \\right]"
"\\,\\,\\,\\,\\,\\,\\,\\,= \\frac{\\ln (x) + 1}{x \\ln (x)}"
Comments
Leave a comment