The equation is given by:
y=ln(xln(x))
Derivative of y with respect to x is:
dxdy=dxd(ln(xln(x)))
=xln(x)1dxd(xln(x)) [∵F′(x)=(f(g(x)))′g′(x)WhereF(x)=f(g(x))]
=xln(x)1[xdxd(ln(x))+ln(x)dxd(x)] [∵dxd(f(x)g(x))=f(x)dxd(g(x))+g(x)dxd(f(x))]
=xln(x)1[x⋅x1+ln(x)⋅1] [∵dxd(ln(x))=x1anddxd(xn)=nxn−1]
=xln(x)ln(x)+1
Comments