Answer to Question #104788 in Calculus for SHIVAM KUMAR

Question #104788
Let f (x) = {√-x ,if x <0
{3-x ,if 0《x <3
{(x-3)^2 ,if x>3
(A) Check whether for is discontinuous.if yes l,find where?
(B) Give a rough sketch of the graph of f.
1
Expert's answer
2020-03-09T11:18:56-0400

y={x,x<03x,0x<3(x3)2,x>3y=\left\{ \begin{matrix} \sqrt{-x} , x<0 \\ 3-x, 0\leq x<3\\ (x-3)^2, x>3 \end{matrix}\right.

x=0limx00x=0limx0+0(3x)=3x=0\\ \lim\limits_{x\to0-0}\sqrt{-x}=0\\ \lim\limits_{x\to0+0}(3-x)=3\\

 The function at the point x=0x=0 has a jump discontinuity


x=3limx30(3x)=0limx3+0(x3)2=0x=3\\ \lim\limits_{x\to3-0}(3-x)=0\\ \lim\limits_{x\to3+0}(x-3)^2=0\\

The function  is a continuous at the point x=3x=3 .

The function  is discontinuous at x=0x=0.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment