We first calculate the integral
"\\int\\limits_{0}^{2}e^{xyz} dz=\\\\\n=\\left\\{\\begin{matrix}\n \\frac{e^{xyz}}{xy}|_0^2, for xy\\neq 0 \\\\\n z|_0^2, otherwise\n\\end{matrix}\\right.=\\\\\n\\left\\{\\begin{matrix}\n \\frac{e^{2xy}}{xy}-\\frac{1}{xy}, for xy\\neq 0 \\\\\n 2, otherwise\n\\end{matrix}\\right. .\\\\"
Then find
"\\int\\limits_{0}^{2}\n\\left\\{\\begin{matrix}\n \\frac{e^{2xy}}{xy}-\\frac{1}{xy}, for xy\\neq 0 \\\\\n 2, otherwise\n\\end{matrix}\\right. dy=\\\\\n\n=\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dy, for xy\\neq 0 \\\\\n \\int\\limits_{0}^{2} 2dy, otherwise\n\\end{matrix}\\right. =\\\\\n=\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dy, for xy\\neq 0 \\\\\n2y|^2_0, otherwise\n\\end{matrix}\\right. =\\\\\n=\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dy, for xy\\neq 0 \\\\\n4, otherwise\n\\end{matrix}\\right. ."
Then find
"\\int\\limits_{0}^{2}\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dy, for xy\\neq 0 \\\\\n4, otherwise\n\\end{matrix}\\right. dx=\\\\\n=\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2} \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dxdy, for xy\\neq 0 \\\\\n\\int\\limits_{0}^{2} 4 dx, otherwise\n\\end{matrix}\\right. =\\\\\n=\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2} \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dxdy, for xy\\neq 0 \\\\\n4 x|_0^2, otherwise\n\\end{matrix}\\right. =\\\\\n=\\left\\{\\begin{matrix}\n \\int\\limits_{0}^{2} \\int\\limits_{0}^{2}\\frac{e^{2xy}-1}{xy}dxdy, for xy\\neq 0 \\\\\n8, otherwise\n\\end{matrix}\\right. ."
Consider the function "\\frac{e^{2xy}-1}{xy}" and find limit
"\\lim\\limits_{xy\\mapsto 0} \\frac{e^{2xy}-1}{xy}=2"
because
"\\lim\\limits_{t\\mapsto 0} \\frac{e^{t}-1}{t}=1" .
This means that the function is integrable and the integral is convergent.
Comments
Leave a comment