Question #104620
The function f(x,y,z) = e^(xyz) is integrable over [0,2] × [0,2] × [0,2] .
1
Expert's answer
2020-03-21T17:03:48-0400

We first calculate the integral

02exyzdz=={exyzxy02,forxy0z02,otherwise={e2xyxy1xy,forxy02,otherwise.\int\limits_{0}^{2}e^{xyz} dz=\\ =\left\{\begin{matrix} \frac{e^{xyz}}{xy}|_0^2, for xy\neq 0 \\ z|_0^2, otherwise \end{matrix}\right.=\\ \left\{\begin{matrix} \frac{e^{2xy}}{xy}-\frac{1}{xy}, for xy\neq 0 \\ 2, otherwise \end{matrix}\right. .\\

Then find

02{e2xyxy1xy,forxy02,otherwisedy=={02e2xy1xydy,forxy0022dy,otherwise=={02e2xy1xydy,forxy02y02,otherwise=={02e2xy1xydy,forxy04,otherwise.\int\limits_{0}^{2} \left\{\begin{matrix} \frac{e^{2xy}}{xy}-\frac{1}{xy}, for xy\neq 0 \\ 2, otherwise \end{matrix}\right. dy=\\ =\left\{\begin{matrix} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dy, for xy\neq 0 \\ \int\limits_{0}^{2} 2dy, otherwise \end{matrix}\right. =\\ =\left\{\begin{matrix} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dy, for xy\neq 0 \\ 2y|^2_0, otherwise \end{matrix}\right. =\\ =\left\{\begin{matrix} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dy, for xy\neq 0 \\ 4, otherwise \end{matrix}\right. .

Then find

02{02e2xy1xydy,forxy04,otherwisedx=={0202e2xy1xydxdy,forxy0024dx,otherwise=={0202e2xy1xydxdy,forxy04x02,otherwise=={0202e2xy1xydxdy,forxy08,otherwise.\int\limits_{0}^{2}\left\{\begin{matrix} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dy, for xy\neq 0 \\ 4, otherwise \end{matrix}\right. dx=\\ =\left\{\begin{matrix} \int\limits_{0}^{2} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dxdy, for xy\neq 0 \\ \int\limits_{0}^{2} 4 dx, otherwise \end{matrix}\right. =\\ =\left\{\begin{matrix} \int\limits_{0}^{2} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dxdy, for xy\neq 0 \\ 4 x|_0^2, otherwise \end{matrix}\right. =\\ =\left\{\begin{matrix} \int\limits_{0}^{2} \int\limits_{0}^{2}\frac{e^{2xy}-1}{xy}dxdy, for xy\neq 0 \\ 8, otherwise \end{matrix}\right. .

Consider the function e2xy1xy\frac{e^{2xy}-1}{xy} and find limit

limxy0e2xy1xy=2\lim\limits_{xy\mapsto 0} \frac{e^{2xy}-1}{xy}=2

because

limt0et1t=1\lim\limits_{t\mapsto 0} \frac{e^{t}-1}{t}=1 .

This means that the function is integrable and the integral is convergent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS