A.) "\\int \\frac{1}{(2x+1)^{\\frac{3}{2}}} \\, dx"
"= \\int (2x+1)^{- \\frac{3}{2}} \\, dx"
Let us assume that:
"2x + 1 = u \\\\\n\\Rightarrow 2 \\, dx = du \\\\\n\\Rightarrow dx = \\frac{du}{2}"
Now:
Substituting "u = 2x + 1" into the integration and integrating with respect to "du" , we have:
"= \\frac{1}{2} \\int u^{-\\frac{3}{2}} \\, du"
"= \\frac{1}{2} \\left[ \\frac{u^{-\\frac{1}{2}}}{- \\frac{1}{2}} \\right] + C" "\\hspace{1 cm}" [ "\\because \\int x^n \\, dx = \\frac{x^{n+1}}{n+1} + C \\, \\," ( Where "C" is a constant of integration) ]
"= - \\frac{1}{u^{\\frac{1}{2}}} + C \\\\\n= - \\frac{1}{\\sqrt{u}} + C"
Undo substitution and we have:
"= - \\frac{1}{\\sqrt{2x+1}} + C \\hspace{1 cm}" [ "\\because u = 2x + 1" ]
"\\\\"
B.) "\\int sin (2x + 3) \\, dx"
Let us assume that:
"u = 2x + 3 \\\\\n\\Rightarrow du = 2 \\, dx \\\\\n\\Rightarrow dx = \\frac{du}{2}"
Now:
Substituting "u = 2x + 3" into the integration and integrating with respect to "du" , we have:
"= \\frac{1}{2} \\int \\sin (u) \\, du"
"= - \\frac{1}{2} \\cos (u) + C \\hspace {1 cm}" [ "\\because \\int \\sin (x) \\, dx = - \\cos (x) + C \\,\\," (Where "C" is a constant of integration) ]
Undo substitution and we have:
"= - \\frac{\\cos(2x+3)}{2} + C \\hspace {1 cm} \\left[ \\because u = 2x+ 3 \\right]"
"\\\\"
C.) "\\int \\cosec (4x) \\, dx"
Let us assume that:
"4x = u \\\\\n\\Rightarrow 4 \\, dx = du \\\\\n\\Rightarrow dx = \\frac{du}{4}"
Now:
Substituting "4x = u" into the integration and integrating with respect to "du" , we have:
"= \\frac{1}{4} \\int \\cosec (u) \\, du"
"= - \\frac{1}{4} \\ln \\mid \\cosec (u) + \\cot (u) \\mid + C \\hspace{1 cm}" [ "\\because \\int \\cosec (x) \\, dx = - \\ln \\mid \\cosec (x) + \\cot(x) \\mid + C \\,\\," (Where "C" is a constant of integration)]
Undo substitution and we have:
"= - \\frac{\\ln \\mid \\cosec (4x) + \\cot (4x) \\mid }{4} + C \\hspace{1 cm} \\left[ \\because u = 4x \\right]"
"\\\\"
D.) "\\int \\frac{1}{\\sqrt{1 - 9x^2}} \\, dx"
"= \\int \\frac{1}{\\sqrt{9(\\frac{1}{9} - x^2)}} \\, dx"
"= \\frac{1}{3} \\int \\frac{1}{\\sqrt{(\\frac{1}{3})^2 - x^2}} \\, dx"
"= \\frac{1}{3} \\sin^{-1} \\left( \\frac{x}{\\frac{1}{3}} \\right) + C \\hspace{1 cm}" [ "\\because \\int \\frac{1}{\\sqrt{a^2 - x^2}} \\, dx = \\sin^{-1} \\left( \\frac{x}{a} \\right) + C \\,\\," (Where "C" is a constant of integration)]
"= \\frac{1}{3} \\sin^{-1} (3x) + C"
"\\\\"
E.) "\\int \\frac{1}{1 + 4x^2} \\, dx"
"= \\frac{1}{4} \\int \\frac{1}{\\frac{1}{4} + x^2} \\, dx"
"= \\frac{1}{4} \\int \\frac{1}{(\\frac{1}{2})^2 + x^2} \\, dx"
"= \\frac{1}{4} \\left[ \\frac{1}{\\frac{1}{2}} \\tan^{-1} \\left( \\frac{x}{\\frac{1}{2}} \\right) \\right] + C \\hspace{1 cm}" [ "\\because \\int \\frac{1}{x^2 + a^2} \\, dx = \\frac{1}{a} \\tan^{-1} \\left( \\frac{x}{a} \\right) + C \\,\\," (Where "C" is a constant of integration) ]
"= \\frac{\\tan^{-1} (2x)}{2} + C"
Comments
Dear rachael, please use the panel for submitting new questions.
∫_1^3▒〖( 3x^2 +48)dx
Leave a comment