A.) ∫ 1 ( 2 x + 1 ) 3 2 d x \int \frac{1}{(2x+1)^{\frac{3}{2}}} \, dx ∫ ( 2 x + 1 ) 2 3 1 d x
= ∫ ( 2 x + 1 ) − 3 2 d x = \int (2x+1)^{- \frac{3}{2}} \, dx = ∫ ( 2 x + 1 ) − 2 3 d x
Let us assume that:
2 x + 1 = u ⇒ 2 d x = d u ⇒ d x = d u 2 2x + 1 = u \\
\Rightarrow 2 \, dx = du \\
\Rightarrow dx = \frac{du}{2} 2 x + 1 = u ⇒ 2 d x = d u ⇒ d x = 2 d u
Now:
Substituting u = 2 x + 1 u = 2x + 1 u = 2 x + 1 into the integration and integrating with respect to d u du d u , we have:
= 1 2 ∫ u − 3 2 d u = \frac{1}{2} \int u^{-\frac{3}{2}} \, du = 2 1 ∫ u − 2 3 d u
= 1 2 [ u − 1 2 − 1 2 ] + C = \frac{1}{2} \left[ \frac{u^{-\frac{1}{2}}}{- \frac{1}{2}} \right] + C = 2 1 [ − 2 1 u − 2 1 ] + C \hspace{1 cm} [ ∵ ∫ x n d x = x n + 1 n + 1 + C \because \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \, \, ∵ ∫ x n d x = n + 1 x n + 1 + C ( Where C C C is a constant of integration) ]
= − 1 u 1 2 + C = − 1 u + C = - \frac{1}{u^{\frac{1}{2}}} + C \\
= - \frac{1}{\sqrt{u}} + C = − u 2 1 1 + C = − u 1 + C
Undo substitution and we have:
= − 1 2 x + 1 + C = - \frac{1}{\sqrt{2x+1}} + C \hspace{1 cm} = − 2 x + 1 1 + C [ ∵ u = 2 x + 1 \because u = 2x + 1 ∵ u = 2 x + 1 ]
\\
B.) ∫ s i n ( 2 x + 3 ) d x \int sin (2x + 3) \, dx ∫ s in ( 2 x + 3 ) d x
Let us assume that:
u = 2 x + 3 ⇒ d u = 2 d x ⇒ d x = d u 2 u = 2x + 3 \\
\Rightarrow du = 2 \, dx \\
\Rightarrow dx = \frac{du}{2} u = 2 x + 3 ⇒ d u = 2 d x ⇒ d x = 2 d u
Now:
Substituting u = 2 x + 3 u = 2x + 3 u = 2 x + 3 into the integration and integrating with respect to d u du d u , we have:
= 1 2 ∫ sin ( u ) d u = \frac{1}{2} \int \sin (u) \, du = 2 1 ∫ sin ( u ) d u
= − 1 2 cos ( u ) + C = - \frac{1}{2} \cos (u) + C \hspace {1 cm} = − 2 1 cos ( u ) + C [ ∵ ∫ sin ( x ) d x = − cos ( x ) + C \because \int \sin (x) \, dx = - \cos (x) + C \,\, ∵ ∫ sin ( x ) d x = − cos ( x ) + C (Where C C C is a constant of integration) ]
Undo substitution and we have:
= − cos ( 2 x + 3 ) 2 + C [ ∵ u = 2 x + 3 ] = - \frac{\cos(2x+3)}{2} + C \hspace {1 cm} \left[ \because u = 2x+ 3 \right] = − 2 c o s ( 2 x + 3 ) + C [ ∵ u = 2 x + 3 ]
\\
C.) ∫ cosec ( 4 x ) d x \int \cosec (4x) \, dx ∫ cosec ( 4 x ) d x
Let us assume that:
4 x = u ⇒ 4 d x = d u ⇒ d x = d u 4 4x = u \\
\Rightarrow 4 \, dx = du \\
\Rightarrow dx = \frac{du}{4} 4 x = u ⇒ 4 d x = d u ⇒ d x = 4 d u
Now:
Substituting 4 x = u 4x = u 4 x = u into the integration and integrating with respect to d u du d u , we have:
= 1 4 ∫ cosec ( u ) d u = \frac{1}{4} \int \cosec (u) \, du = 4 1 ∫ cosec ( u ) d u
= − 1 4 ln ∣ cosec ( u ) + cot ( u ) ∣ + C = - \frac{1}{4} \ln \mid \cosec (u) + \cot (u) \mid + C \hspace{1 cm} = − 4 1 ln ∣ cosec ( u ) + cot ( u ) ∣ + C [ ∵ ∫ cosec ( x ) d x = − ln ∣ cosec ( x ) + cot ( x ) ∣ + C \because \int \cosec (x) \, dx = - \ln \mid \cosec (x) + \cot(x) \mid + C \,\, ∵ ∫ cosec ( x ) d x = − ln ∣ cosec ( x ) + cot ( x ) ∣ + C (Where C C C is a constant of integration)]
Undo substitution and we have:
= − ln ∣ cosec ( 4 x ) + cot ( 4 x ) ∣ 4 + C [ ∵ u = 4 x ] = - \frac{\ln \mid \cosec (4x) + \cot (4x) \mid }{4} + C \hspace{1 cm} \left[ \because u = 4x \right] = − 4 l n ∣ c o s e c ( 4 x ) + c o t ( 4 x ) ∣ + C [ ∵ u = 4 x ]
\\
D.) ∫ 1 1 − 9 x 2 d x \int \frac{1}{\sqrt{1 - 9x^2}} \, dx ∫ 1 − 9 x 2 1 d x
= ∫ 1 9 ( 1 9 − x 2 ) d x = \int \frac{1}{\sqrt{9(\frac{1}{9} - x^2)}} \, dx = ∫ 9 ( 9 1 − x 2 ) 1 d x
= 1 3 ∫ 1 ( 1 3 ) 2 − x 2 d x = \frac{1}{3} \int \frac{1}{\sqrt{(\frac{1}{3})^2 - x^2}} \, dx = 3 1 ∫ ( 3 1 ) 2 − x 2 1 d x
= 1 3 sin − 1 ( x 1 3 ) + C = \frac{1}{3} \sin^{-1} \left( \frac{x}{\frac{1}{3}} \right) + C \hspace{1 cm} = 3 1 sin − 1 ( 3 1 x ) + C [ ∵ ∫ 1 a 2 − x 2 d x = sin − 1 ( x a ) + C \because \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left( \frac{x}{a} \right) + C \,\, ∵ ∫ a 2 − x 2 1 d x = sin − 1 ( a x ) + C (Where C C C is a constant of integration)]
= 1 3 sin − 1 ( 3 x ) + C = \frac{1}{3} \sin^{-1} (3x) + C = 3 1 sin − 1 ( 3 x ) + C
\\
E.) ∫ 1 1 + 4 x 2 d x \int \frac{1}{1 + 4x^2} \, dx ∫ 1 + 4 x 2 1 d x
= 1 4 ∫ 1 1 4 + x 2 d x = \frac{1}{4} \int \frac{1}{\frac{1}{4} + x^2} \, dx = 4 1 ∫ 4 1 + x 2 1 d x
= 1 4 ∫ 1 ( 1 2 ) 2 + x 2 d x = \frac{1}{4} \int \frac{1}{(\frac{1}{2})^2 + x^2} \, dx = 4 1 ∫ ( 2 1 ) 2 + x 2 1 d x
= 1 4 [ 1 1 2 tan − 1 ( x 1 2 ) ] + C = \frac{1}{4} \left[ \frac{1}{\frac{1}{2}} \tan^{-1} \left( \frac{x}{\frac{1}{2}} \right) \right] + C \hspace{1 cm} = 4 1 [ 2 1 1 tan − 1 ( 2 1 x ) ] + C [ ∵ ∫ 1 x 2 + a 2 d x = 1 a tan − 1 ( x a ) + C \because \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \,\, ∵ ∫ x 2 + a 2 1 d x = a 1 tan − 1 ( a x ) + C (Where C C C is a constant of integration) ]
= tan − 1 ( 2 x ) 2 + C = \frac{\tan^{-1} (2x)}{2} + C = 2 t a n − 1 ( 2 x ) + C
Comments
Dear rachael, please use the panel for submitting new questions.
∫_1^3▒〖( 3x^2 +48)dx