Question #104843
Derive the reduction formula
∫ (x^2+a^2)^n\2 dx= x (x^2+a^2)^n\2\n+1+na^2\n+1∫ (x^2+a^2)^n\2-1 dx
Use the formula to integrate ∫ (x^2+a^2)5\2
1
Expert's answer
2020-03-09T14:01:00-0400

ANSWER.

To derive the formula

(x2+a2)n2dx=1n+1x(x2+a2)n2+nn+1a2(x2+a2)n22dx\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }dx } =\frac { 1 }{ n+1 } x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+\frac { n }{ n+1 } { a }^{ 2 }\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n-2 }{ 2 } }dx } (1)

we use integration by parts udv=uvvdu\int { udv } =uv-\int { vdu } . We denote

In:=(x2+a2)n2dx{ I }_{ n\quad }:=\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }dx } . Then (1) has the form:

In=1n+1x(x2+a2)n2+nn+1a2In2{ I }_{ n\quad }=\frac { 1 }{ n+1 } x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+\frac { n }{ n+1 } { a }^{ 2 }{ I }_{ n-2\quad } (2)

If u=(x2+a2)n2,dv=dxu={ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } },\quad dv=dx , then v=x,du=nx(x2+a2)n21dxv=x,\quad du=nx{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } -1 }dx and

In=x(x2+a2)n2nx2(x2+a2)n21dx={ I }_{ n\quad }=x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }-n\int { { { x }^{ 2 }\left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } -1 }dx } =

=x(x2+a2)n2n(x2+a2a2)(x2+a2)n22dx==x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }-n\int { { { (x }^{ 2 }+{ a }^{ 2 }-{ a }^{ 2 })\left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n-2 }{ 2 } \quad }dx } =

=x(x2+a2)n2+na2In2 nIn=x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+n{ a }^{ 2 }{ I }_{ n-2\ }-n{ I }_{ n\quad \quad }.Add to both sides of the last equality  (nIn)(nI_n) ,we get (n+1)In =x(x2+a2)n2+na2In2(n+1){ I }_{ n\ }=x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+n{ a }^{ 2 }{ I }_{ n-2\quad } . Dividing both sides of the equality by (n+1)(n+1) , we obtain the formula (2) .

We use formula (2) to calculate the integral  I5 =(x2+a2)52dx (n=5){ I }_{ 5 }\ =\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }dx\ } (n=5)

I5=15+1x(x2+a2)52+5a25+1I3(3)I_5=\frac { 1 }{ 5+1 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 5+1 } { I }_{ 3 }\quad\quad (3)

I3=13+1x(x2+a2)32+3a23+1I1(4)I_3=\frac { 1 }{ 3+1 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+\frac { 3{ a }^{ 2 } }{ 3+1 } { I }_{ 1 }\quad\quad (4)

I1=11+1x(x2+a2)12+ a21+1I1(5)I_1=\frac { 1 }{ 1+1 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 1 }{ 2 } }+\frac { \ { a }^{ 2 } }{ 1+1 } { I }_{ -1 }\quad\quad (5)

I1=lnx+x2+a2+Const{ I }_{ -1 }=\ln { \left| x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right| } +Const

Substituting (4) in (3), (5) in (4),  I1I_{-1} in (5) , we obtain

I5=16x(x2+a2)52+5a26I3=I_5=\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 6 } { I }_{ 3 }=

=16x(x2+a2)52+5a26[14x(x2+a2)32+3a24I1]==\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 6 } \left[ \frac { 1 }{ 4 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+\frac { 3{ a }^{ 2 } }{ 4 } { I }_{ 1 } \right] =

=16x(x2+a2)52+5a224x(x2+a2)32+15a424[12x(x2+a2)12+ a22I1]==\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 24 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+\frac { 15{ a }^{ 4 } }{ 24 } \left[ \frac { 1 }{ 2 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 1 }{ 2 } }+\frac { \ { a }^{ 2 } }{ 2 } { I }_{ -1 } \right] =

=16x(x2+a2)52+5a224x(x2+a2)32+=\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 24 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+

+15a448x(x2+a2)12+15a648 lnx+x2+a2+C+\frac { 15{ a }^{ 4 } }{ 48 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 1 }{ 2 } }+\frac { 15{ a }^{ 6 } }{ 48 } \cdot \ \ln { \left| x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right| } +C

   


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS