ANSWER.
To derive the formula
∫ ( x 2 + a 2 ) n 2 d x = 1 n + 1 x ( x 2 + a 2 ) n 2 + n n + 1 a 2 ∫ ( x 2 + a 2 ) n − 2 2 d x \int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }dx } =\frac { 1 }{ n+1 } x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+\frac { n }{ n+1 } { a }^{ 2 }\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n-2 }{ 2 } }dx } ∫ ( x 2 + a 2 ) 2 n d x = n + 1 1 x ( x 2 + a 2 ) 2 n + n + 1 n a 2 ∫ ( x 2 + a 2 ) 2 n − 2 d x (1)
we use integration by parts ∫ u d v = u v − ∫ v d u \int { udv } =uv-\int { vdu } ∫ u d v = uv − ∫ v d u . We denote
I n : = ∫ ( x 2 + a 2 ) n 2 d x { I }_{ n\quad }:=\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }dx } I n := ∫ ( x 2 + a 2 ) 2 n d x . Then (1) has the form:
I n = 1 n + 1 x ( x 2 + a 2 ) n 2 + n n + 1 a 2 I n − 2 { I }_{ n\quad }=\frac { 1 }{ n+1 } x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+\frac { n }{ n+1 } { a }^{ 2 }{ I }_{ n-2\quad } I n = n + 1 1 x ( x 2 + a 2 ) 2 n + n + 1 n a 2 I n − 2 (2)
If u = ( x 2 + a 2 ) n 2 , d v = d x u={ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } },\quad dv=dx u = ( x 2 + a 2 ) 2 n , d v = d x , then v = x , d u = n x ( x 2 + a 2 ) n 2 − 1 d x v=x,\quad du=nx{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } -1 }dx v = x , d u = n x ( x 2 + a 2 ) 2 n − 1 d x and
I n = x ⋅ ( x 2 + a 2 ) n 2 − n ∫ x 2 ( x 2 + a 2 ) n 2 − 1 d x = { I }_{ n\quad }=x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }-n\int { { { x }^{ 2 }\left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } -1 }dx } = I n = x ⋅ ( x 2 + a 2 ) 2 n − n ∫ x 2 ( x 2 + a 2 ) 2 n − 1 d x =
= x ⋅ ( x 2 + a 2 ) n 2 − n ∫ ( x 2 + a 2 − a 2 ) ( x 2 + a 2 ) n − 2 2 d x = =x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }-n\int { { { (x }^{ 2 }+{ a }^{ 2 }-{ a }^{ 2 })\left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n-2 }{ 2 } \quad }dx } = = x ⋅ ( x 2 + a 2 ) 2 n − n ∫ ( x 2 + a 2 − a 2 ) ( x 2 + a 2 ) 2 n − 2 d x =
= x ⋅ ( x 2 + a 2 ) n 2 + n a 2 I n − 2 − n I n =x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+n{ a }^{ 2 }{ I }_{ n-2\ }-n{ I }_{ n\quad \quad } = x ⋅ ( x 2 + a 2 ) 2 n + n a 2 I n − 2 − n I n .Add to both sides of the last equality ( n I n ) (nI_n) ( n I n ) ,we get ( n + 1 ) I n = x ⋅ ( x 2 + a 2 ) n 2 + n a 2 I n − 2 (n+1){ I }_{ n\ }=x\cdot { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { n }{ 2 } }+n{ a }^{ 2 }{ I }_{ n-2\quad } ( n + 1 ) I n = x ⋅ ( x 2 + a 2 ) 2 n + n a 2 I n − 2 . Dividing both sides of the equality by ( n + 1 ) (n+1) ( n + 1 ) , we obtain the formula (2) .
We use formula (2) to calculate the integral I 5 = ∫ ( x 2 + a 2 ) 5 2 d x ( n = 5 ) { I }_{ 5 }\ =\int { { \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }dx\ } (n=5) I 5 = ∫ ( x 2 + a 2 ) 2 5 d x ( n = 5 )
I 5 = 1 5 + 1 ⋅ x ( x 2 + a 2 ) 5 2 + 5 a 2 5 + 1 I 3 ( 3 ) I_5=\frac { 1 }{ 5+1 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 5+1 } { I }_{ 3 }\quad\quad (3) I 5 = 5 + 1 1 ⋅ x ( x 2 + a 2 ) 2 5 + 5 + 1 5 a 2 I 3 ( 3 )
I 3 = 1 3 + 1 ⋅ x ( x 2 + a 2 ) 3 2 + 3 a 2 3 + 1 I 1 ( 4 ) I_3=\frac { 1 }{ 3+1 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+\frac { 3{ a }^{ 2 } }{ 3+1 } { I }_{ 1 }\quad\quad (4) I 3 = 3 + 1 1 ⋅ x ( x 2 + a 2 ) 2 3 + 3 + 1 3 a 2 I 1 ( 4 )
I 1 = 1 1 + 1 ⋅ x ( x 2 + a 2 ) 1 2 + a 2 1 + 1 I − 1 ( 5 ) I_1=\frac { 1 }{ 1+1 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 1 }{ 2 } }+\frac { \ { a }^{ 2 } }{ 1+1 } { I }_{ -1 }\quad\quad (5) I 1 = 1 + 1 1 ⋅ x ( x 2 + a 2 ) 2 1 + 1 + 1 a 2 I − 1 ( 5 )
I − 1 = ln ∣ x + x 2 + a 2 ∣ + C o n s t { I }_{ -1 }=\ln { \left| x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right| } +Const I − 1 = ln ∣ ∣ x + x 2 + a 2 ∣ ∣ + C o n s t
Substituting (4) in (3), (5) in (4), I − 1 I_{-1} I − 1 in (5) , we obtain
I 5 = 1 6 ⋅ x ( x 2 + a 2 ) 5 2 + 5 a 2 6 I 3 = I_5=\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 6 } { I }_{ 3 }= I 5 = 6 1 ⋅ x ( x 2 + a 2 ) 2 5 + 6 5 a 2 I 3 =
= 1 6 ⋅ x ( x 2 + a 2 ) 5 2 + 5 a 2 6 [ 1 4 ⋅ x ( x 2 + a 2 ) 3 2 + 3 a 2 4 I 1 ] = =\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 6 } \left[ \frac { 1 }{ 4 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+\frac { 3{ a }^{ 2 } }{ 4 } { I }_{ 1 } \right] = = 6 1 ⋅ x ( x 2 + a 2 ) 2 5 + 6 5 a 2 [ 4 1 ⋅ x ( x 2 + a 2 ) 2 3 + 4 3 a 2 I 1 ] =
= 1 6 ⋅ x ( x 2 + a 2 ) 5 2 + 5 a 2 24 ⋅ x ( x 2 + a 2 ) 3 2 + 15 a 4 24 [ 1 2 ⋅ x ( x 2 + a 2 ) 1 2 + a 2 2 I − 1 ] = =\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 24 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+\frac { 15{ a }^{ 4 } }{ 24 } \left[ \frac { 1 }{ 2 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 1 }{ 2 } }+\frac { \ { a }^{ 2 } }{ 2 } { I }_{ -1 } \right] = = 6 1 ⋅ x ( x 2 + a 2 ) 2 5 + 24 5 a 2 ⋅ x ( x 2 + a 2 ) 2 3 + 24 15 a 4 [ 2 1 ⋅ x ( x 2 + a 2 ) 2 1 + 2 a 2 I − 1 ] =
= 1 6 ⋅ x ( x 2 + a 2 ) 5 2 + 5 a 2 24 ⋅ x ( x 2 + a 2 ) 3 2 + =\frac { 1 }{ 6 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 5 }{ 2 } }+\frac { 5{ a }^{ 2 } }{ 24 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 3 }{ 2 } }+ = 6 1 ⋅ x ( x 2 + a 2 ) 2 5 + 24 5 a 2 ⋅ x ( x 2 + a 2 ) 2 3 +
+ 15 a 4 48 ⋅ x ( x 2 + a 2 ) 1 2 + 15 a 6 48 ⋅ ln ∣ x + x 2 + a 2 ∣ + C +\frac { 15{ a }^{ 4 } }{ 48 } \cdot x{ \left( { x }^{ 2 }+{ a }^{ 2 } \right) }^{ \frac { 1 }{ 2 } }+\frac { 15{ a }^{ 6 } }{ 48 } \cdot \ \ln { \left| x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right| } +C + 48 15 a 4 ⋅ x ( x 2 + a 2 ) 2 1 + 48 15 a 6 ⋅ ln ∣ ∣ x + x 2 + a 2 ∣ ∣ + C
Comments