dVdt=k∗4πr2\frac{dV}{dt}=k*4\pi r^2dtdV=k∗4πr2
V=43πr3V=\frac{4}{3}\pi r^3V=34πr3
dVdt=4πr2drdt\frac{dV}{dt}=4\pi r^2\frac{dr}{dt}dtdV=4πr2dtdr
So, dVdt=4πr2drdt=k∗4πr2\frac{dV}{dt}=4\pi r^2\frac{dr}{dt}=k*4\pi r^2dtdV=4πr2dtdr=k∗4πr2
or drdt=k\frac{dr}{dt}=kdtdr=k
Integrating, we get: r=kt+Cr=kt+Cr=kt+C
To find k and C we use two conditions: r(0)=3, r(0.5)=2r(0)=3,\;\; r(0.5)=2r(0)=3,r(0.5)=2
We have:
3=k∗0+C, 2=k∗0.5+C or C=3,k=−23=k*0+C, \\ \;2=k*0.5+C\;\;or\;\;C=3, k=-23=k∗0+C,2=k∗0.5+CorC=3,k=−2
And finally, r=−2t+3r=-2t+3r=−2t+3 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments