The new normalized basis vectors are
( e ⃗ 1 ′ e ⃗ 2 ′ e ⃗ 3 ′ ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) ( e ⃗ 1 e ⃗ 2 e ⃗ 3 ) \begin{pmatrix} \vec{e}'_1 \\ \vec{e}'_2\\\vec{e}'_3\end{pmatrix} =\begin{pmatrix} \frac{1}{\sqrt{10}} & -\frac{3}{\sqrt{10}}& 0\\\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}& 0 \\ 0 & 0 & 1\end{pmatrix}
\begin{pmatrix} \vec{e}_1 \\ \vec{e}_2\\\vec{e}_3\end{pmatrix} ⎝ ⎛ e 1 ′ e 2 ′ e 3 ′ ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 − 10 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ e 1 e 2 e 3 ⎠ ⎞ using
1 2 + 3 2 + 0 2 = 10 \sqrt{1^2 + 3^2 + 0^2} = \sqrt{10} 1 2 + 3 2 + 0 2 = 10 The coordinates transform with the transpose matrix
( x ′ y ′ z ′ ) = ( 1 10 3 10 0 − 3 10 1 10 0 0 0 1 ) ( x y z ) \begin{pmatrix}x' \\ y'\\z'\end{pmatrix} =\begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}}& 0\\-\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}& 0 \\ 0 & 0 & 1\end{pmatrix}
\begin{pmatrix} x \\y\\z\end{pmatrix} ⎝ ⎛ x ′ y ′ z ′ ⎠ ⎞ = ⎝ ⎛ 10 1 − 10 3 0 10 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ x y z ⎠ ⎞ hence
( x y z ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) ( x ′ y ′ z ′ ) \begin{pmatrix}x \\ y\\z\end{pmatrix} =\begin{pmatrix} \frac{1}{\sqrt{10}} & -\frac{3}{\sqrt{10}}& 0\\\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}& 0 \\ 0 & 0 & 1\end{pmatrix}
\begin{pmatrix} x' \\y'\\z'\end{pmatrix} ⎝ ⎛ x y z ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 − 10 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ x ′ y ′ z ′ ⎠ ⎞
{ x = 1 10 ( x ′ − 3 y ′ ) y = 1 10 ( 3 x ′ + y ′ ) z = z ′ \begin{cases}
x &= &\frac{1}{\sqrt{10}} (x' - 3y')\\
y &= &\frac{1}{\sqrt{10}} (3x' + y') \\
z &= &z'
\end{cases} ⎩ ⎨ ⎧ x y z = = = 10 1 ( x ′ − 3 y ′ ) 10 1 ( 3 x ′ + y ′ ) z ′
12 x 2 − 2 y 2 + z 2 = 2 x y 12x^2 - 2 y^2 + z^2 =2xy 12 x 2 − 2 y 2 + z 2 = 2 x y 12 10 ( x ′ − 3 y ′ ) 2 − 2 10 ( 3 x ′ + y ′ ) 2 + z ′ 2 = 2 10 ( x ′ − 3 y ′ ) ( 3 x ′ + y ′ ) \frac{12}{10}(x'-3y')^2 -\frac{2}{10} (3x'+y')^2+z'^2 =\frac{2}{10} (x'-3y')(3x'+y') 10 12 ( x ′ − 3 y ′ ) 2 − 10 2 ( 3 x ′ + y ′ ) 2 + z ′2 = 10 2 ( x ′ − 3 y ′ ) ( 3 x ′ + y ′ ) 6 5 ( x ′ 2 − 6 x ′ y ′ + 9 y ′ 2 ) − 1 5 ( 9 x ′ 2 + 6 x ′ y ′ + y ′ 2 ) + z ′ 2 = 1 5 ( 3 x ′ 2 − 8 x ′ y ′ − 3 y ′ 2 ) \frac{6}{5}(x'^2 -6x'y' + 9y'^2) - \frac{1}{5} (9x'^2 + 6x'y' + y'^2) + z'^2 = \frac{1}{5} (3x'^2 -8x'y' -3y'^2) 5 6 ( x ′2 − 6 x ′ y ′ + 9 y ′2 ) − 5 1 ( 9 x ′2 + 6 x ′ y ′ + y ′2 ) + z ′2 = 5 1 ( 3 x ′2 − 8 x ′ y ′ − 3 y ′2 ) − 6 5 x ′ 2 + 56 5 y ′ 2 + z ′ 2 = 34 5 x ′ y ′ -\frac{6}{5}x'^2 +\frac{56}{5}y'^2 + z'^2 = \frac{34}{5}x'y' − 5 6 x ′2 + 5 56 y ′2 + z ′2 = 5 34 x ′ y ′ − 6 x ′ 2 + 56 y ′ 2 + 5 z ′ 2 = 34 x ′ y ′ -6x'^2 + 56y'^2 + 5z'^2 = 34x'y' − 6 x ′2 + 56 y ′2 + 5 z ′2 = 34 x ′ y ′
Comments