The new normalized basis vectors are
"\\begin{pmatrix} \\vec{e}'_1 \\\\ \\vec{e}'_2\\\\\\vec{e}'_3\\end{pmatrix} =\\begin{pmatrix} \\frac{1}{\\sqrt{10}} & -\\frac{3}{\\sqrt{10}}& 0\\\\\\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}}& 0 \\\\ 0 & 0 & 1\\end{pmatrix}\n\n \\begin{pmatrix} \\vec{e}_1 \\\\ \\vec{e}_2\\\\\\vec{e}_3\\end{pmatrix}"using
"\\sqrt{1^2 + 3^2 + 0^2} = \\sqrt{10}"The coordinates transform with the transpose matrix
"\\begin{pmatrix}x' \\\\ y'\\\\z'\\end{pmatrix} =\\begin{pmatrix} \\frac{1}{\\sqrt{10}} & \\frac{3}{\\sqrt{10}}& 0\\\\-\\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}}& 0 \\\\ 0 & 0 & 1\\end{pmatrix}\n\n \\begin{pmatrix} x \\\\y\\\\z\\end{pmatrix}"hence
"\\begin{pmatrix}x \\\\ y\\\\z\\end{pmatrix} =\\begin{pmatrix} \\frac{1}{\\sqrt{10}} & -\\frac{3}{\\sqrt{10}}& 0\\\\\\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}}& 0 \\\\ 0 & 0 & 1\\end{pmatrix}\n\n \\begin{pmatrix} x' \\\\y'\\\\z'\\end{pmatrix}"
Comments
Leave a comment