1. Represent the plain and the conicoid in an implicit form:
"F(x,y,z)=2x-3y+6z-6=0;"
"G(x,y,z)=4x\u00b2-9y\u00b2+36z\u00b2-36=0."
2. The normal vectors to the surfaces are determined by the partial derivatives:
"N_F = (\\frac{\u2202F}{\u2202x},\\frac{\u2202F}{\u2202y},\\frac{\u2202F}{\u2202z}) =(2,-3,6);"
"N_G = (\\frac{\u2202G}{\u2202x},\\frac{\u2202G}{\u2202y},\\frac{\u2202G}{\u2202z}) =(8x,-18y,72z)."
3. If the plain touches the conicoid, then their normal vectors at the point of contact must be collinear:
"N_G = k * N_F;"
"(8x,-18y,72z)=k*(2,-3,6);"
"x=\\frac{k}{4}; y=\\frac{k}{6}; z=\\frac{k}{12}."
4. Put the values of variables to the equation of the plain and find the coordinates of the contact point:
"2*\\frac{k}{4}-3*\\frac{k}{6}+6*\\frac{k}{12}-6=0;"
"\\frac{k}{2}-\\frac{k}{2}+\\frac{k}{2}-6=0;"
"k=12;x=3;y=2;z=1;" M0(3,2,1).
This point lies also in the conicoid:
"4x\u00b2-9y\u00b2+36z\u00b2-36=4*3\u00b2-9*2\u00b2+36*1\u00b2-36=0."
5. Thus, M0 is a common point of surfaces, and normal vectors are collinear there, so the plain touches the conicoid at the point M0(3,2,1).
Comments
Leave a comment