We give a quadratic form:
to the canonical form
"B= \\begin{pmatrix}\n 1 & -1 \\\\\n -1 & 1\n\\end{pmatrix}"
Find the eigenvalues and eigenvectors of this matrix:
Characteristic equation:
Find the main axes of the quadratic form, that is, the eigenvectors of the matrix B.
or
"x_1-y_1 = 0"
The eigenvector "(\u03bb_1 = 0 , for x_1 = 1)"
:
"\\vert \\bar{x_1}\\vert=\\sqrt{1^2+1^2}=\\sqrt{2}"So
The coordinates of the eigenvector (eigenvalue "\u03bb_2 = 2"):
or
"-x_1-y_1 = 0"
The eigenvector
"(\u03bb_2 = 2, for x_1=1)"
Moving on to a new basis:
From (1) obtain
"({\\frac{1}{\\sqrt{2}} x_1+\\frac{1}{\\sqrt{2}} y_1})^2 - 2({\\frac{1}{\\sqrt{2}} x_1+\\frac{1}{\\sqrt{2}} y_1})({\\frac{1}{\\sqrt{2}} x_1-\\frac{1}{\\sqrt{2}} y_1}) +\\\\\n+ ({\\frac{1}{\\sqrt{2}} x_1-\\frac{1}{\\sqrt{2}} y_1})^2 - 3({\\frac{1}{\\sqrt{2}} x_1+\\frac{1}{\\sqrt{2}} y_1}) + 2({\\frac{1}{\\sqrt{2}} x_1-\\frac{1}{\\sqrt{2}} y_1}) + 3 = 0"
Now, completing the squares, we get
Or
We received the equation of a parabola:
"(y - y0)^2 = 2p(x - x0) , p=\\frac{1}{4\\sqrt{2}}"
Comments
Leave a comment