x 2 − 2 x y + y 2 − 3 x + 2 y + 3 = 0 ( 1 ) x^2 - 2xy + y^2 - 3x + 2y + 3 = 0 \text{ } (1) x 2 − 2 x y + y 2 − 3 x + 2 y + 3 = 0 ( 1 ) We give a quadratic form:
x 2 − 2 x y + y 2 x^2 - 2xy + y^2 x 2 − 2 x y + y 2 to the canonical form
B = ( 1 − 1 − 1 1 ) B= \begin{pmatrix}
1 & -1 \\
-1 & 1
\end{pmatrix} B = ( 1 − 1 − 1 1 )
Find the eigenvalues and eigenvectors of this matrix:
( 1 − λ ) x 1 − 1 y 1 = 0 − 2 x 1 + ( 1 − λ ) y 1 = 0 (1 - λ)x_1 -1y_1 = 0 \\
-2x_1 + (1 - λ)y_1 = 0 ( 1 − λ ) x 1 − 1 y 1 = 0 − 2 x 1 + ( 1 − λ ) y 1 = 0
Characteristic equation:
∣ 1 − λ − 1 − 1 1 − λ ∣ = λ 2 − 2 λ = 0 \begin{vmatrix}
1 - λ & -1 \\
-1 & 1 - λ
\end{vmatrix}= λ^2- 2λ = 0 ∣ ∣ 1 − λ − 1 − 1 1 − λ ∣ ∣ = λ 2 − 2 λ = 0
λ 2 − 2 λ = 0 D = ( − 2 ) 2 − 4 ∗ 1 = 4 λ^2 -2 λ = 0 \\
D=(-2)^2 - 4*1=4 λ 2 − 2 λ = 0 D = ( − 2 ) 2 − 4 ∗ 1 = 4
Find the main axes of the quadratic form, that is, the eigenvectors of the matrix B.
λ 1 = 0 x 1 − y 1 = 0 − x 1 + y 1 = 0 λ_1 = 0 \\
x_1-y_1 = 0 \\
-x_1 + y_1 = 0 λ 1 = 0 x 1 − y 1 = 0 − x 1 + y 1 = 0 or
x 1 − y 1 = 0 x_1-y_1 = 0 x 1 − y 1 = 0
The eigenvector ( λ 1 = 0 , f o r x 1 = 1 ) (λ_1 = 0 , for x_1 = 1) ( λ 1 = 0 , f or x 1 = 1 )
:
∣ x 1 ˉ ∣ = 1 2 + 1 2 = 2 \vert \bar{x_1}\vert=\sqrt{1^2+1^2}=\sqrt{2} ∣ x 1 ˉ ∣ = 1 2 + 1 2 = 2 So
The coordinates of the eigenvector (eigenvalue λ 2 = 2 λ_2 = 2 λ 2 = 2 ):
− x 1 − y 1 = 0 − x 1 − y 1 = 0 -x_1-y_1 = 0 \\
-x_1-y_1 = 0 − x 1 − y 1 = 0 − x 1 − y 1 = 0 or
− x 1 − y 1 = 0 -x_1-y_1 = 0 − x 1 − y 1 = 0
The eigenvector
( λ 2 = 2 , f o r x 1 = 1 ) (λ_2 = 2, for x_1=1) ( λ 2 = 2 , f or x 1 = 1 )
∣ x 2 ˉ ∣ = 1 2 + ( − ) 1 2 = 2 \vert \bar{x_2}\vert=\sqrt{1^2+(-)1^2}=\sqrt{2} ∣ x 2 ˉ ∣ = 1 2 + ( − ) 1 2 = 2
Moving on to a new basis:
From (1) obtain
( 1 2 x 1 + 1 2 y 1 ) 2 − 2 ( 1 2 x 1 + 1 2 y 1 ) ( 1 2 x 1 − 1 2 y 1 ) + + ( 1 2 x 1 − 1 2 y 1 ) 2 − 3 ( 1 2 x 1 + 1 2 y 1 ) + 2 ( 1 2 x 1 − 1 2 y 1 ) + 3 = 0 ({\frac{1}{\sqrt{2}} x_1+\frac{1}{\sqrt{2}} y_1})^2 - 2({\frac{1}{\sqrt{2}} x_1+\frac{1}{\sqrt{2}} y_1})({\frac{1}{\sqrt{2}} x_1-\frac{1}{\sqrt{2}} y_1}) +\\
+ ({\frac{1}{\sqrt{2}} x_1-\frac{1}{\sqrt{2}} y_1})^2 - 3({\frac{1}{\sqrt{2}} x_1+\frac{1}{\sqrt{2}} y_1}) + 2({\frac{1}{\sqrt{2}} x_1-\frac{1}{\sqrt{2}} y_1}) + 3 = 0 ( 2 1 x 1 + 2 1 y 1 ) 2 − 2 ( 2 1 x 1 + 2 1 y 1 ) ( 2 1 x 1 − 2 1 y 1 ) + + ( 2 1 x 1 − 2 1 y 1 ) 2 − 3 ( 2 1 x 1 + 2 1 y 1 ) + 2 ( 2 1 x 1 − 2 1 y 1 ) + 3 = 0
Now, completing the squares, we get
( y 1 − 5 4 1 2 ) 2 = 1 2 ( 1 2 x 1 − 23 16 ) ( y_1- \frac{5}{4} \frac{1}{\sqrt{2}})^2 = \frac{1}{2} (\frac{1}{\sqrt{2}}x_1- \frac{23}{16}) ( y 1 − 4 5 2 1 ) 2 = 2 1 ( 2 1 x 1 − 16 23 )
Or
( y 1 − 5 4 2 ) 2 = 2 1 4 1 2 ( x 1 − 23 16 2 ) ( y_1- \frac{5}{4\sqrt{2}} )^2 = 2\frac{1}{4}\frac{1}{\sqrt{2} }(x_1- \frac{23}{16}\sqrt{2}) ( y 1 − 4 2 5 ) 2 = 2 4 1 2 1 ( x 1 − 16 23 2 )
We received the equation of a parabola:
( y − y 0 ) 2 = 2 p ( x − x 0 ) , p = 1 4 2 (y - y0)^2 = 2p(x - x0) , p=\frac{1}{4\sqrt{2}} ( y − y 0 ) 2 = 2 p ( x − x 0 ) , p = 4 2 1
Comments