1. Find inverse functions of the line and the parabola:
y=x+C⇒x=y−C;
y2+4x=0⇒x=−4y2.
2. The slope of the line with respect to x-axis:
x=y−C=1∗y−C;
k=1.
3. The tangent to the parabola and the line have the same slope, sо
x=−4y2;
x′(y)=−2y=k=1;
y=−2;
x=−4y2=−4(−2)2=−1.
C=y−x=−1.
Thus, the line touches the parabola at the point (-1,-2).
4.The tangent and normal vectors of the line with the slope 'k' are defined by formulas respectively (in reverse order (y,x)):
T′=(1,k)=(1,1);
N′=(−k,1)=(−1,1).
In general order (x,y) we obtain:
T=(1,1);
N=(1,−1).
5. Hence, the equation of the normal is
1x+1=−1y+2;
x+1=−y−2;
y=−x−3.
Answer:y=−x−3.
Comments
Leave a comment