I'll use invariants.
2x2+7y2−4xy+3y−1=0 a11=2,a22=7,a12=−2,a13=0,a23=1.5,a33=−1 I2=∣2−2−27∣=10>0 I3=∣2−20−271.501.5−1∣=−14−2∗2.25+4=−14.5 I1=tr(2−2−27)=9 I2>0, I1I3<0 ⟹ Ellipse2x^2+7y^2-4xy+3y-1=0 \\ \\ a_{11} = 2, a_{22} = 7, a_{12} = -2, a_{13} = 0, a_{23} = 1.5, a_{33} = -1 \\ \\I_2 = \begin{vmatrix} 2 & -2 \\ -2 & 7 \end{vmatrix} = 10 > 0 \\ \\I_3 = \begin{vmatrix} 2 & -2 & 0 \\ -2 & 7 & 1.5\\ 0 & 1.5 & -1 \end{vmatrix} = -14 - 2*2.25 + 4 = -14.5 \\ \\ I_1 = tr\begin{pmatrix} 2 & -2 \\ -2 & 7 \end{pmatrix} = 9 \\ \\ I_2 > 0, I_1I_3 < 0 \implies Ellipse2x2+7y2−4xy+3y−1=0 a11=2,a22=7,a12=−2,a13=0,a23=1.5,a33=−1 I2=∣∣2−2−27∣∣=10>0 I3=∣∣2−20−271.501.5−1∣∣=−14−2∗2.25+4=−14.5 I1=tr(2−2−27)=9 I2>0, I1I3<0⟹Ellipse
Answer: b
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments