Question #91543
Find the equations of the spheres which pass through the circle x²+y²+z²=9, 2x+2y-7=0 and touch the plane x-y+z+3=0
1
Expert's answer
2019-07-16T10:19:49-0400

1. x²+y²+z²=9 is an equation of the sphere S1 with center O1(0,0,0) and radiusR1=9=3.R_1=\sqrt{9}=3.


2. The sign distance from the plane ax+by+cz+d=0 to the point X0(x0,y0,z0) is determined by


D=ax0+by0+cz0+da2+b2+c2,D=\frac{ax_0+by_0+cz_0+d}{\sqrt{a^2+b^2+c^2}},


which is positive if X0 is on the same side of the plane as the normal vector n=(a,b,c) and negative if it is on the opposite side. Hens, the distance from the plane 2x+2y-7=0 to the point O1(0,0,0) is equal to


D1=722+22+02=78.D_1=\frac{-7}{\sqrt{2^2+2^2+0^2}}=-\frac{7}{\sqrt{8}}.

3. The radius of the given circle can be determined by the Pythagorean theorem:


r1=R12D12=32(78)2=9498=238.r_1=\sqrt{R_1^2-D_1^2}=\sqrt{3^2-(\frac{-7}{\sqrt{8}})^2}=\sqrt{9-\frac{49}{8}}=\sqrt{\frac{23}{8}}.


4. The sphere S2 passes through the given circle, so its center O2 lies on the line parallel to n1 and passing through O1:


O2=O1+λn1=(0,0,0)+λ(2,2,0)=(2λ,2λ,0),O_2 = O_1 + λ\bold{n_1}=(0,0,0)+λ(2,2,0)=(2λ,2λ,0),


and its radius R2 is equal to


D21=22λ+22λ+00722+22+02=8λ78;D_{21}=\frac{2*2λ+2*2λ+0*0-7}{\sqrt{2^2+2^2+0^2}}=\frac{8λ-7}{\sqrt{8}};R2=r12+D212=238+(8λ7)28=23+(8λ7)28.R_2=\sqrt{r_1^2+D_{21}^2}=\sqrt{\frac{23}{8}+\frac{(8λ-7)^2}{8}}=\sqrt{\frac{23+(8λ-7)^2}{8}}.

5. Because the sphere S2 toches the plane x-y+z+3=0, then R2 is equal to the distance from its center to the plane:


D2=12λ12λ+10+312+(1)2+12=3=R2;D_2=\frac{1*2λ-1*2λ+1*0+3}{\sqrt{1^2+(-1)^2+1^2}}=\sqrt{3}=R_2;

23+(8λ7)28=3;\sqrt{\frac{23+(8λ-7)^2}{8}}=\sqrt{3};

23+(8λ7)2=24;23+(8λ-7)^2=24;

(8λ7)2=1;(8λ-7)^2=1;

8λ7=±1;8λ-7=±1;

8λ=7±1.8λ=7±1.


6. Equations of the spheres:

1) λ1=68=34;λ_1=\frac{6}{8}=\frac{3}{4}; O21=(2λ1,2λ1,0)=(32,32,0);O_2^1 =(2λ_1,2λ_1,0)=(\frac{3}{2},\frac{3}{2},0);

(x32)2+(y32)2+z2=R22=3;(x-\frac{3}{2})²+(y-\frac{3}{2})²+z²=R_2^2=3;


2) λ2=88=1;O22=(2λ2,2λ2,0)=(2,2,0);λ_2=\frac{8}{8}=1;O_2^2 =(2λ_2,2λ_2,0)=(2,2,0);

(x2)2+(y2)2+z2=R22=3.(x-2)²+(y-2)²+z²=R_2^2=3.


Answer:

(x32)2+(y32)2+z2=3;(x-\frac{3}{2})²+(y-\frac{3}{2})²+z²=3;

(x2)2+(y2)2+z2=3.(x-2)²+(y-2)²+z²=3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS